화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.98, No.8, 3679-3689, 2014
Codon modification for the DNA sequence of a single-chain Fv antibody against clenbuterol and expression in Pichia pastoris
The expression efficiency was improved for the recombinant single-chain variable fragment (scFv) against clenbuterol (CBL) obtained from mouse and expressed in the methylotrophic yeast Pichia pastoris GS115, by redesigning and synthesizing the DNA sequence encoding for CBL-scFv based on the codon bias of P. pastoris. The codons enco4ding 124 amino acids were optimized, in which a total of 156 nucleotides were changed, and the G+C ratio was simultaneously decreased from 53 to 47.2 %. Under the optimized expression conditions, the yield of the recombinant CBL-scFv (41 kDa) antibodies was 0.223 g L-1 in shake culture. Compared to the non-optimized control, the expression level of the optimized recombinant CBL-scFv based on preferred codons in P. pastoris demonstrated a 2.35-fold higher yield. Furthermore, the recombinant CBL-scFv was purified by Ni-NTA column chromatography, and the purity was 95 %. The purified CBL-scFv showed good CBL recognition by a competitive indirect enzyme-linked immunoassay. The average concentration required for 50 % inhibition of binding and the limit of detection for the assay were 5.82 and 0.77 ng mL(-1), respectively.