Applied Microbiology and Biotechnology, Vol.98, No.10, 4437-4443, 2014
Development of an improved phenylacetaldehyde reductase mutant by an efficient selection procedure
Chiral alcohols are valuable as diverse chemicals and synthetic intermediate materials. Phenylacetaldehyde reductase (PAR) is an enzyme that converts a wide variety of ketones into chiral alcohols with high optical purity. When an alcohol such as 2-propanol is used as a hydrogen donor, PAR itself will also mediate the regeneration of the coenzyme NADH in situ. Perceiving a capacity for improvement, we sought to develop a PAR that is able to convert higher concentrations of substrates in the presence of high concentrations of 2-propanol. The selection procedure for mutants was re-examined and a procedure able to select an effective amino acid substitution was established. Two advantageous amino acid substitutions were successfully selected using the procedure. When high-concentration substrate conversion reaction was subjected with a mutant that integrated both the two amino acid substitutions, near-complete conversions of m-chlorophenacyl chloride (m-CPC) (2.1 mmol/ml) and ethyl 4-chloro-3-oxobutanoate (ECOB) (1.9 mmol/ml) were achieved.
Keywords:Phenylacetaldehyde reductase (PAR);Rhodococcus sp;Optically pure alcohols;Asymmetric reduction;Coupled NADH regeneration;Engineered enzymes;2-Propanol