Applied Microbiology and Biotechnology, Vol.98, No.11, 5185-5194, 2014
Time-lapse video microscopy and image analysis of adherence and growth patterns of Candida albicans strains
Digital image analysis of high time resolution video microscopy was used to investigate hyphal growth dynamics in different Candida albicans strains. The effects of the quorum sensing molecules tyrosol and farnesol, the deletion of the fungus specific protein phosphatase Z1 CaPPZ1), and the hypha-specific cyclin (HGC1) genes were analyzed by this method. Our system monitored cell growth in a CO2 incubator under near-physiological conditions and measured three major parameters under the following stringent conditions: (a) the time of yeast cell adherence, (b) the time of hyphal outgrowth, and (c) the rate of hyphal growth. This method showed that hyphal extension of wild-type SC5314 cells was accelerated by tyrosol and inhibited by farnesol. Hyphal growth rate was moderately lower in cappz1 and strongly reduced in hgc1 mutants. In addition, tyrosol treatment caused a firm adherence, while farnesol treatment and hgc1 mutation prevented the adherence of yeast cells to the surface of the culture flask. Transition from yeast-to-hyphal state was faster after tyrosol treatment, while it was reduced in farnesol-treated cells as well as in the cappz1 and hgc1 mutants. Our data confirm the notion that the attachment of yeast cells, the yeast-to-hyphal transition, and hyphal growth rate are closely related processes. Time-lapse video microscopy combined with image analysis offers a convenient and reliable method of testing chemicals, including potential drug candidates, and genetic manipulations on the dynamic morphological changes in C. albicans strains.
Keywords:Candida albicans;Quorum-sensing molecules;Genetic mutations;Yeast cell adherence;Hyphae outgrowth;Image analysis