Applied Surface Science, Vol.263, 671-677, 2012
Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film
The structural, optical and magnetic properties of the Zn1-xMnxO (0 < x < 0.05) thin films synthesized by sol-gel technique have been analyzed in the light of modification of the electronic structure and disorder developed in the samples due to Mn doping. The films are of single phase in nature; no formation of any secondary phase has been detected from structural analysis. Absence of magnetic impurity phase in these films has been confirmed from morphological study also. Increasing tendency of lattice parameters and unit cell volume has been observed with increasing Mn doping concentration. The incorporation of Mn2+ ions introduces disorder in the system. That also leads to slight degradation in crystalline quality of the films with increasing doping. The grain size reduces with increase in Mn doping proportion. The band gaps shows red shift with doping and the width of localized states shows an increasing tendency with doping concentration. It is due to the formation of impurity band and trapping of Mn atoms, which leads to the generation of the defect states within the forbidden band. Photoluminescence (PL) spectra show gradual decrease of intensity of exitonic and defect related peaks with increasing Mn doping. Defect mediated intrinsic ferromagnetism has been observed even at room temperature for 5 at% Mn doped ZnO film. The strong presence of antiferromagnetic (AFM) interaction reduces the observed ferromagnetic moments. (C) 2012 Elsevier B.V. All rights reserved.