화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.5, 970-976, October, 1996
지방족 에스터-카보네이트 공중합체의 합성
Synthesis of Aliphatic Ester-Carbonate Copolymer
초록
생분해성 지방족폴리에스터인 poly(butylene succinate) (PBS)의 기계적 물성을 변화시키기 위해서 에스터 주쇄 구조에 카보네이트 구조를 도입시킨 에스터-카보네이트 공중합체를 합성하였다. 이 공중합체는 일단계에서 succinic acid와 1,4-butanediol(BD)을 에스터 반응시켜 oligo(butylene succinate)를 합성하였고, 이 단계에서 oligohexamethylenecarbonate biol(OHMCG)을 첨가하고 고진공하에서 축중합하여 제조하였다. 촉매로는 titanium(Ⅳ) isopropoxide(TIP)를 사용하였다. 합성된 공중합체의 구조는 FT-IR과 1H-NMR을 이용하여 확인하였으며, 열적, 기계적 물성은 각각 DSC와 UTM을 이용하여 조사하였다. 고분자량의 공중합체를 얻을 수 있는 적정 촉매양은 succinic acid에 대해서 lwt%였다. Diol 혼합물의 몰비(BD:OHMCG)가 249:1∼149:1일 때, 높은 점도를 갖는 공중합체를 얻을 수 있었다 또한, OHMCG의 함량이 증가함에 따라 공중합체의 용융점은 계속 감소하였다. 혼합물의 몰비가 149:1인 경우의 공중합체의 물성은 PBS에 비해 초기탄t성율은 약간 감소하였지만 파단신장율은 2배 정도 증가되었다.
An ester-carbonate copolymer was synthesized, in which carbonate was inserted into a biodegradable aliphatic polyester, poly(butylene succinate) (PBS), to modify its mechanical properties. The synthesis was carried out by condensation reactions in two steps. In the first step, oligo(butylene succinate) was prepared by the reaction of succinic acid with 1,4-butanediol (BD). In the second step, it was reacted with oligohexamethylenecarbonate diol (OHMCG) to prepare the ester-carbonate copolymer. Titanium(IV) isopropoxide (TIP) was used as a cytalyst for the reaction. The structure of the copolymer was confirmed by FT-IR and H(1)-NMR and the thermal behavior and mechanical properties were investigated by differential scanning calorimetry (DSC) and universal testing machine (UTM), respectively. It was found that optimum amount of the catalyst for the formation of high molecular weight copolymer was 1 wt% for succinic acid. When the BD:OHMCG is in the range 149:1~249:1, the copolymer with high viscosity was obtained. As the OHMCG content was increased, melting temperature (T(m)) of the copolymer was decreased. When BD:OHMCG is 149:1, the copolymer showed a increase in ultimate strain by two times and the slight decrease in modulus compared to those of PBS.
  1. Vert M, Angew. Makromol. Chem., 167, 55 (1989) 
  2. Singhal JS, Singh H, Ray AR, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C28(384), 475 (1988)
  3. Kumor GS, Kalpagam V,Nandi TS, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C22(2), 225 (1982)
  4. Huang SJ, Bell JP, Proceedings of, "The Third International Symposium," 731, Applied Science, New York (1976)
  5. Bitritto MM, Bell JP, Brenckle GM, Huang SJ, Knox JR, J. Appl. Polym. Sci., 35, 405 (1979) 
  6. Kopecek J, Ulbrich K, Prog. Polym. Sci., 9, 1 (1983) 
  7. Fields RD, Rodriquez F, Finn RK, J. Appl. Polym. Sci., 18, 3571 (1974) 
  8. Huang SJ, "Encyclopedia of Polymer Science and Engineering," 2, 220, John Wiley Interscience, New York (1985)
  9. Huang SJ, "Comprehensive Polymer Science," 6, 567, Pergamon (1989)
  10. Kumar GS, Kalpagram T, Nandi TS, J. Makromol. Sci. Chem., 22, 225 (1982)
  11. Nishida H, Tokiwa Y, Chem. Lett., 421 (1994) 
  12. Godard P, Dekoninck JM, Devlesaver V, Devaux J, J. Polym. Sci. A: Polym. Chem., 24, 3301 (1986) 
  13. Hong BJ, M.S. Thesis, Hanyang University (1994)
  14. Kim DK, Shin YS, Im SS, Yoo YT, Huh JR, Polym.(Korea), 20(3), 431 (1996)