화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.5, 1006-1014, October, 1996
에틸렌 이량화를 위한 새로운 NiO-ZrO2/WO3촉매의 제조와 특성
Preparation and Characterization of New NiO-ZrO2/WO3Catalyst for Ethylene Dimerization
초록
에틸렌 이량화반응을 위한 일련의 NiO-ZrO2/WO3촉매를 염화니켈-옥시염화 질코니움 수용액을 공침시키고 ammonium metatungstate용액으로 함침시킨 다음 공기 중에서 소성하여 제조하였다. X-선 회절과 DSC로부터 얻은 결과를 근거로 하면 ZrO2에 NiO 및 WO3첨가하면 ZrO2와 첨가된 산화물과의 상호작용으로 ZrO2 무정형에서 tetragonal phase로의 상전이 온도가 더 높은 온도로 이동되었다. WO3가 첨가되지 않은 NiO-ZrO2는 에틸렌 이량화반응에 전혀 촉매 활성을 나타내지 아니하였으나 WO3가 첨가된 NiO-ZrO2/WO3촉매는 실온에서도 높은 활성을 나타내었다. 이와 같은 NiO-ZrO2WO3의 높은 촉매활성은 WO3의 유도효과에 의한 산세기의 증가와 밀접한 관련이 있었다.
A series of catalysts, NiO-ZrO2/WO3, for ethylene dimerization were prepared by coprecipitation from a solution of nickel chloride - zirconium oxychloride mixture followed by dry impregnation with an aqueous solution of ammonium metatungstate and calcination in air. On the basis of the results obtained from x-ray diffraction and DSC, the addition of NiO and WO3 to ZrO2 shifted the transition of ZrO2 from amorphous to a tetragonal phase toward higher temperatures due to the interaction between NiO(or WO3) and ZrO2. NiO-ZrO2 without WO3 was inactive for the ethylene dimerization, but NiO-ZrO2/WO3 was found to be very active even at room temperature. The high catalytic activity of NiO-ZrO2WO3 was closely correlated with the increase of acid strength by the inductive effect of WO3.
  1. Hogan JP, Banks RL, Lanning WC, Clark A, Ind. Eng. Chem., 47, 752 (1955) 
  2. Uchida H, Imai H, Bull. Chem. Soc. Jpn., 35, 989 (1962) 
  3. Uchida H, Imai H, Bull. Chem. Soc. Jpn., 35, 995 (1962) 
  4. Uchida H, Imai H, Bull. Chem. Soc. Jpn., 38, 925 (1962) 
  5. Sohn JR, Ozaki A, J. Catal., 59, 303 (1979) 
  6. Sohn JR, Ozaki A, J. Catal., 61, 29 (1980) 
  7. Wendt G, Fritsch E, Schllner R, Siegel H, Z. Anorg. Allg. Chem., 467, 51 (1980) 
  8. Flinv RA, Larson OA, Beuther H, Ind. Eng. Chem., 52, 153 (1960) 
  9. Berndt GF, Thomson SJ, Webb GJ, J. Chem. Soc.-Faraday Trans., 79, 195 (1983)
  10. Herwijnen TV, Doesburg HV, Jong DV, J. Catal., 28, 391 (1973) 
  11. Wendt G, Hentschel D, Finster J, Schollner R, J. Chem. Soc.-Faraday Trans., 79, 2013 (1983) 
  12. Ozaki A, Kimura K, J. Catal., 3, 395 (1964) 
  13. Maruya K, Ozaki A, Bull. Chem. Soc. Jpn., 46, 351 (1973) 
  14. Bonneviot L, Olivier D, Che M, J. Mol. Catal. A-Chem., 21, 415 (1983)
  15. Elev IV, Shelimov BN, Kazansky VB, J. Catal., 89, 470 (1984) 
  16. Ghosh AK, Kevan LJ, J. Phys. Chem., 92, 4439 (1988) 
  17. Sohn JR, Kim HJ, J. Catal., 101, 428 (1986) 
  18. Sohn JR, Kim HW, Kim JT, J. Mol. Catal., 41, 375 (1987) 
  19. Sohn JR, Kim HW, Park MY, Park EH, Kim JT, Park SE, Appl. Catal. A: Gen., 128(1), 127 (1995) 
  20. Sohn JR, Cho SG, Pae YI, Hayashi S, J. Catal., 159(1), 170 (1996) 
  21. Livage J, Doi K, Mazieres C, J. Am. Ceram. Soc., 51, 349 (1968) 
  22. Hutig GF, Pater A, Z. Anorg. Chem., 189, 183 (1930) 
  23. Sohn JR, Rhu SG, Langmuir, 9, 126 (1993) 
  24. Hammett LD, Deyrup AJ, J. Am. Chem. Soc., 54, 272 (1932)
  25. Olah FGA, Prakash GKS, Sommer J, Science, 13, 20 (1979) 
  26. Bernholc J, Horseley JA, Murrell LL, Sherman LG, Soled S, J. Phys. Chem., 91, 1526 (1987) 
  27. Parry EP, J. Catal., 2, 371 (1963) 
  28. Kimura K, Ozaki A, J. Catal., 18, 271 (1970) 
  29. Hino M, Arata K, J. Chem. Soc.-Chem. Commun., 1259 (1987)