Journal of the Korean Industrial and Engineering Chemistry, Vol.7, No.5, 1006-1014, October, 1996
에틸렌 이량화를 위한 새로운 NiO-ZrO2/WO3촉매의 제조와 특성
Preparation and Characterization of New NiO-ZrO2/WO3Catalyst for Ethylene Dimerization
초록
에틸렌 이량화반응을 위한 일련의 NiO-ZrO2/WO3촉매를 염화니켈-옥시염화 질코니움 수용액을 공침시키고 ammonium metatungstate용액으로 함침시킨 다음 공기 중에서 소성하여 제조하였다. X-선 회절과 DSC로부터 얻은 결과를 근거로 하면 ZrO2에 NiO 및 WO3첨가하면 ZrO2와 첨가된 산화물과의 상호작용으로 ZrO2 무정형에서 tetragonal phase로의 상전이 온도가 더 높은 온도로 이동되었다. WO3가 첨가되지 않은 NiO-ZrO2는 에틸렌 이량화반응에 전혀 촉매 활성을 나타내지 아니하였으나 WO3가 첨가된 NiO-ZrO2/WO3촉매는 실온에서도 높은 활성을 나타내었다. 이와 같은 NiO-ZrO2WO3의 높은 촉매활성은 WO3의 유도효과에 의한 산세기의 증가와 밀접한 관련이 있었다.
A series of catalysts, NiO-ZrO2/WO3, for ethylene dimerization were prepared by coprecipitation from a solution of nickel chloride - zirconium oxychloride mixture followed by dry impregnation with an aqueous solution of ammonium metatungstate and calcination in air. On the basis of the results obtained from x-ray diffraction and DSC, the addition of NiO and WO3 to ZrO2 shifted the transition of ZrO2 from amorphous to a tetragonal phase toward higher temperatures due to the interaction between NiO(or WO3) and ZrO2. NiO-ZrO2 without WO3 was inactive for the ethylene dimerization, but NiO-ZrO2/WO3 was found to be very active even at room temperature. The high catalytic activity of NiO-ZrO2WO3 was closely correlated with the increase of acid strength by the inductive effect of WO3.
- Hogan JP, Banks RL, Lanning WC, Clark A, Ind. Eng. Chem., 47, 752 (1955)
- Uchida H, Imai H, Bull. Chem. Soc. Jpn., 35, 989 (1962)
- Uchida H, Imai H, Bull. Chem. Soc. Jpn., 35, 995 (1962)
- Uchida H, Imai H, Bull. Chem. Soc. Jpn., 38, 925 (1962)
- Sohn JR, Ozaki A, J. Catal., 59, 303 (1979)
- Sohn JR, Ozaki A, J. Catal., 61, 29 (1980)
- Wendt G, Fritsch E, Schllner R, Siegel H, Z. Anorg. Allg. Chem., 467, 51 (1980)
- Flinv RA, Larson OA, Beuther H, Ind. Eng. Chem., 52, 153 (1960)
- Berndt GF, Thomson SJ, Webb GJ, J. Chem. Soc.-Faraday Trans., 79, 195 (1983)
- Herwijnen TV, Doesburg HV, Jong DV, J. Catal., 28, 391 (1973)
- Wendt G, Hentschel D, Finster J, Schollner R, J. Chem. Soc.-Faraday Trans., 79, 2013 (1983)
- Ozaki A, Kimura K, J. Catal., 3, 395 (1964)
- Maruya K, Ozaki A, Bull. Chem. Soc. Jpn., 46, 351 (1973)
- Bonneviot L, Olivier D, Che M, J. Mol. Catal. A-Chem., 21, 415 (1983)
- Elev IV, Shelimov BN, Kazansky VB, J. Catal., 89, 470 (1984)
- Ghosh AK, Kevan LJ, J. Phys. Chem., 92, 4439 (1988)
- Sohn JR, Kim HJ, J. Catal., 101, 428 (1986)
- Sohn JR, Kim HW, Kim JT, J. Mol. Catal., 41, 375 (1987)
- Sohn JR, Kim HW, Park MY, Park EH, Kim JT, Park SE, Appl. Catal. A: Gen., 128(1), 127 (1995)
- Sohn JR, Cho SG, Pae YI, Hayashi S, J. Catal., 159(1), 170 (1996)
- Livage J, Doi K, Mazieres C, J. Am. Ceram. Soc., 51, 349 (1968)
- Hutig GF, Pater A, Z. Anorg. Chem., 189, 183 (1930)
- Sohn JR, Rhu SG, Langmuir, 9, 126 (1993)
- Hammett LD, Deyrup AJ, J. Am. Chem. Soc., 54, 272 (1932)
- Olah FGA, Prakash GKS, Sommer J, Science, 13, 20 (1979)
- Bernholc J, Horseley JA, Murrell LL, Sherman LG, Soled S, J. Phys. Chem., 91, 1526 (1987)
- Parry EP, J. Catal., 2, 371 (1963)
- Kimura K, Ozaki A, J. Catal., 18, 271 (1970)
- Hino M, Arata K, J. Chem. Soc.-Chem. Commun., 1259 (1987)