Automatica, Vol.50, No.5, 1360-1368, 2014
Maximum a posteriori state path estimation: Discretization limits and their interpretation
Continuous-discrete models with dynamics described by stochastic differential equations are used in a wide variety of applications. For these systems, the maximum a posteriori (MAP) state path can be defined as the curves around which lie the infinitesimal tubes with greatest posterior probability, which can be found by maximizing a merit function built upon the Onsager-Machlup functional. A common approach used in the engineering literature to obtain the MAP state path is to discretize the dynamics and obtain the MAP state path for the discretized system. In this paper, we prove that if the trapezoidal scheme is used for discretization, then the discretized MAP state path estimation converges hypographically to the continuous-discrete MAP state path estimation as the discretization gets finer. However, if the stochastic Euler scheme is used instead, then the discretized estimation converges to the minimum energy estimation. The minimum energy estimates are, in turn, proved to be the state paths associated with the MAP noise paths, which in some cases differ from the MAP state paths. Therefore, the discretized MAP state paths can have different interpretations depending on the discretization scheme used. (C) 2014 Elsevier Ltd. All rights reserved.