Biochemical and Biophysical Research Communications, Vol.443, No.2, 464-469, 2014
Inhibition of aldolase A blocks biogenesis of ATP and attenuates Japanese encephalitis virus production
Viral replication depends on host proteins to supply energy and replication accessories for the sufficient production of viral progeny. In this study, we identified fructose-bisphosphate aldolase A as a binding partner of Japanese encephalitis virus (JEV) untranslated regions (UTRs) on the antigenome via RNA affinity capture and mass spectrometry. Direct interaction of aldolase A with JEV RNAs was confirmed by gel mobility shift assay and colocalization with active replication of double-stranded RNA in JEV-infected cells. Infection of JEV caused an increase in aldolase A expression of up to 33%. Knocking down aldolase A reduced viral translation, genome replication, and viral production significantly. Furthermore, JEV infection consumed 50% of cellular ATP, and the ATP level decreased by 70% in the aldolase A-knockdown cells. Overexpression of aldolase A in aldolase A-knockdown cells increased ATP levels significantly. Taken together, these results indicate that JEV replication requires aldolase A and consumes ATP. This is the first report of direct involvement of a host metabolic enzyme, aldolase A protein, in JEV replication. (C) 2013 Elsevier Inc. All rights reserved.