Biomacromolecules, Vol.15, No.5, 1593-1601, 2014
Electrospun Poly(L-lactide-co-acryloyl carbonate) Fiber Scaffolds With a Mechanically Stable Crimp Structure For Ligament Tissue Engineering
The aim of this study was to prepare a fibrous scaffold that possesses a crimped morphology using a photo-cross-linkable biodegradable copolymer. To obtain the crimped morphology, the polymer was first electrospun onto a rotating wire mandrel to obtain aligned straight fibers. Postprocessing by immersion in aqueous buffer at 37 degrees C generated a crimplike pattern in the fibers. It was reasoned that cross-linking the fibers following formation of the crimped structure would endow the scaffolds with a recoverable crimp pattern and mechanical properties similar to that of the collagen fibers in the anterior cruciate ligament (ACL). To achieve this aim, a trimethylene carbonate based monomer bearing an acrylate pendant group was synthesized and copolymerized with L-lactide. The copolymer was electrospun and photo-cross-linked yielding fibrous scaffolds possessing a substantial increase in tensile modulus and crimp stability compared to the uncross-linked fibrous scaffolds. The crimp-stabilized scaffolds also showed good cytocompatibility toward 3T3 fibroblasts, which attached and grew along the crimped fibers. These findings suggest that these cross-linked fiber scaffolds may be useful for the generation of cultured ligament tissue.