Current Microbiology, Vol.68, No.6, 708-716, 2014
Co-Metabolic Biodegradation of DBP by Paenibacillus sp S-3 and H-2
Two di-n-butyl phthalate (DBP)-degrading strains, designated as S-3 and H-2, were isolated from DBP-polluted soil and both identified as Paenibacillus sp. When DBP was provided as the sole carbon source, about 45.5 and 71.7 % of DBP (100 mg/L) were degraded by strain S-3 and H-2, respectively, after incubation for 48 h. However, DBP (100 mg/L) was degraded completely by co-culture of strain S-3 and H-2 after incubation for 60 h. Four phthalic acid (PA) esters could be utilized by co-metabolism in the study and the degradation rates followed the order of dimethyl phthalate > diethyl phthalate > DBP > dioctyl phthalate. The metabolic pathway of DBP was elucidated based on the results of metabolites identification and enzyme assays. For strain S-3, DBP was degraded into butyl hydrogen phthalate which was degraded to PA by carboxyesterase further. But PA could be not hydrolyzed further because strain S-3 lacked 3,4-phthalate dioxygenase. Different with S-3, strain H-2 could hydrolyze PA into 3,4-dihydroxy-PA by 3,4-phthalate dioxygenase. Then 3,4-dihydroxy-PA was converted to protocatechuate and benzoic acid. Finally, the aromatic ring was cleavage and mineralized to CO2 and H2O. Above all, co-metabolism could increase the activity of 3,4-phthalate dioxygenase and accelerated the degradation of DBP. This study highlights an important potential use of co-metabolic biodegradation for the in situ bioremediation of DBP and its metabolites-contaminated environment.