Industrial & Engineering Chemistry Research, Vol.53, No.10, 3766-3777, 2014
Electrochemical Separation: Promises, Opportunities, and Challenges To Develop Next-Generation Radionuclide Generators To Meet Clinical Demands
This review provides a comprehensive summary of the role of the electrochemical separation process to develop next-generation radionuclide generators to meet future research and clinical demands. This innovative technology paradigm, straddling the disciplines of electrochemistry and separation science, is poised to serve as a springboard to spur new breakthroughs and bring evolutionary progress in radionuclide generator technology. Without doubt, the major impetus for the advancement in radionuclide generator technology stems from nuclear medicine requirements, as a means of obtaining short-lived radionuclides on demand for the formulation of a gamut of diagnostic and therapeutic radiopharmaceuticals. The tremendous prospects associated with the use of electrochemical radionuclide generators in nuclear medicine dictate that a holistic consideration should given to all governing factors that determine their success. The purpose of this paper is to present a concise and comprehensive review of the latest research and development activities in the utility of electrochemical separation process in development of radionuclide generators that have already established footholds of acceptance in nuclear medicine and are expected to change the future landscape of radionuclide generator technology. This review provides a summary of the principle, factors that govern the electrochemical separation, desirable characteristics of the generator systems developed with typical examples, critical assessment of recent developments, contemporary status, key challenges, and apertures to the near future.