화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.8, No.4, 667-672, August, 1997
Nickel/Metal Hydride 전지의 열관리기술 개발
Thermal Management of a Nickel/Metal Hydride Battery
초록
고용량 Nickel/Metal hybride 전지의 온도 거동을 3차원 유한요소법 software인 NISA를 사용하여 해석하였다. 전지 내부의 열전도에는 미분형 에너지 수지식을, 외부 대기와의 접촉면은 대류 열전달 방식을 사용하였다. 전지 온도에 영향을 미치는 요소인 열발생량과 대류 열전달계수에 대한 실험을 행하였고, 이 결과로부터 일반식을 도출하였다. 금속 재질의 cooling fin을 사용하므로써 급속한 충전이나 방전시 야기될 수 있는 온도 상승을 상당 부분 방지할 수 있었다. 전지 외벽에 열전도도가 낮고 얇은 절연물질을 부착하여도 최고온도의 상승에 미치는 영향은 미미하였다.
Thermal behavior of high capacity Nickel/Metal hybride battery in analyzed using the NISA software which is based on the three dimensional finite element method. Differential energy balance equation is used for the conduction heat transfer of the battery, while convective heat transfer equation is used for the interface between the battery and air. Heat generation rate and convective heat transfer coefficient are tested as variables to investigate thermal behavior, and the generalized equation for maximum temperature inside the battery is developed. The abrupt rise of the battery temperature due to the quick charge or discharge can be prevented from the use of metallic cooling fin. In addition, temperature augmentation of the battery is negligible when the low thermal conductive and thin insulating material is used outside of the battery case.
  1. McKubre MCH, MacDonald DD, J. Energy, 5, 368 (1981)
  2. Gay EC, Arntzen JD, Fredrickson DR, Yao NP, Abstract 39, P 55, The Electrochemical Society Extended Abstracts, 84-2, New Orleans, LA (1984)
  3. Bro P, Kang HY, J. Electrochem. Soc., 118, 1430 (1971)
  4. Akerlof G, Bender P, J. Am. Chem. Soc., 63, 1085 (1941) 
  5. Washborn E, "International Critical Tables Tables of Numerical Data, Physics, Chemistry and Technology," McGraw-Hill, New York (1928)
  6. Mashovets VP, Krumgal's BS, Divrov A, Matveeva RP, J. Appl. Chem. USSR, 38, 2294 (1965)
  7. Anisimov VM, Russ. J. Phys. Chem., 47, 601 (1973)
  8. Konings RJ, Cordfunke EH, J. Chem. Thermodyn., 20, 103 (1988) 
  9. LeRoy RL, Bowen CT, J. Electrochem. Soc., 127, 1954 (1980) 
  10. Balej J, Int. J. Hydrog. Energy, 10, 233 (1985) 
  11. Kim J, Nguyen TV, White RE, J. Electrochem. Soc., 141(2), 333 (1994) 
  12. Gonzalez-Sanabria OD, IECEC, 6, 68 (1991)
  13. Welty JR, Wilson RE, Wicks CE, "Fundamentals of Momentum, Heat, and Mass Transfer," John Wiley and Sons, Inc., New York (1976)
  14. Reid RC, Prausnitz JM, Poling BE, "The Properties of Gases and Liquids," 4th ed., McGraw-Hill, New York (1987)
  15. Falk SU, Salkind AJ, "Alkaline Storage Batteries," John Wiley and Sons, Inc., New York (1969)
  16. Fellner J, Personal Communication, Wrightpeterson Air-force Base, Dayton, Ohio
  17. Zagrodnik JP, Personal Communication, Johnson Controls Advanced Battery Group, Inc., Butler, Wisconsin
  18. Lim HS, Personal Communication, Hughes Aircraft Co., Los Angeles, California
  19. Perry RH, Chilton CH, "Chemical Engineers Handbook," 5th ed., McGraw-Hill, New York (1973)
  20. Dean JA, "Lange's Handbook of Chemistry," 13th ed., McGraw-Hill, New York (1985)
  21. Weast RC, "CRC Handbook of Chemistry and Physics," 1st Student ed., CRC Press, Inc., Boca Raton, Florida (1988)
  22. Schaffer CA, Ind. Eng. Chem., 50, 1585 (1958) 
  23. Kim J, Nguyen TV, White RE, J. Electrochem. Soc., 139, 2781 (1992)