화학공학소재연구정보센터
Journal of Materials Science, Vol.49, No.9, 3434-3441, 2014
Analysis of junction properties of gold-zinc oxide nanorods-based Schottky diode by means of frequency dependent electrical characterization on textile
Present work is an effort to reveal the junction properties of gold/zinc oxide (ZnO) nanorods-based Schottky diode by using the frequency dependent electrical properties. The most important electrical parameters such as conductance, resistance, capacitance, and impedance were studied as function of frequency across the series of AC voltages. Moreover, current density-voltage (J-V) was measured to know the performance of present Schottky diode. The effect of native defects was also studied by using cathodoluminescence spectroscopy measured at different accelerating voltage. The textile substrate was used for the growth of ZnO nanorods by using the aqueous chemical growth method and Schottky diode fabrication. Diode fabrication on textile fabric is a step forward toward the fabrication of electronic devices on nonconventional, economical, soft, light weight, flexible, wearable, washable, recyclable, reproducible, and nontoxic substrate.