Bioresource Technology, Vol.104, 81-89, 2012
Technoeconomic assessment of phenanthrene degradation by Pseudomonas stutzeri CECT 930 in a batch bioreactor
Polycyclic aromatic hydrocarbons (PAHs) are among the most persistent pollutants that accumulate in natural environment mainly as a result of anthropogenic activities. Therefore, the improvement of the available bank of microbial resources and information is crucial to the proper management of PAHs-polluted sites and effluents. In this work, Pseudomonas stutzeri CECT 930 was selected for aerobically degrading an aqueous effluent containing phenanthrene (PHE). Maximum PHE degradation of 90% was obtained both at flask and stirred tank bioreactor scale. All the experimental data were fitted to logistic and Luede-king and Piret models, and licensed to quantitatively ascertain a stronger dependence on the biomass of the metabolites triggering the bioremediation process. In addition, PHE degradation via protocatechuate pathway was elucidated through GC-MS data. Finally, based on the promising results of biodegradation, a preliminary economic evaluation of this process at industrial scale was approached by means of simulation data obtained with SuperPro Designer. (C) 2011 Elsevier Ltd. All rights reserved.