Bioresource Technology, Vol.147, 77-83, 2013
Power generation in microbial fuel cell fed with post methanation distillery effluent as a function of pH microenvironment
The effect of anolyte and catholyte pH on power generation in an MFC using post methanation distillery effluent (PMDE) was studied in batch mode. Higher anodic pH (7-9) and low cathodic pH (2) were more favorable and at the optimal cathode:anode pH ratio of 2:8, power density attained was 0.457 W/m(3). An initial feed solution pH up to 10 was tolerated by the MFC. However, internal resistance increased 1.5 times and power density decreased by 60% at pH 10 as compared to that at pH 7, the normal anolyte pH. Internal resistance of the MFC was minimum (266 ohms) at cathodic pH 2, thus favoring better power generation. Under low cathodic and high anodic pH ratio of the MFC, a low internal resistance favored both high current density and power density. (C) 2013 Elsevier Ltd. All rights reserved.