화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.2, 159-164, April, 1998
탄화규소의 전구체로서 Polycarbosilane의 합성 및 물성 비교 연구
Study on the Synthesis of Polycarbosilane as a SiC Precursor and its Comparative Property
초록
Dichlorudimethylsilane의 탈염소중합반응에의해 polydimethylsilane(PDMS)을 합성한 후 가압 반응기내의 재배열 반응에 의해 탄화규소(SiC) 전구체인 polycarbosilane(PCS)를 합성하였다. 합성된 PCS는 n-hexane과 methanol의 혼합용매를 사용한 분별 침전법으로 분자량에 따라 세 분율로 분리한 다음 FT-IR, NMR, GPC, TGA/DSC와 XRD를 사용하여 분석한 뒤 상업용 고분자와 비교하였다. 또한 합성되 PCS의 분자량 분포는 반응 압력, 반응 온도 및 시간에 대한 의존성을 가지며 분자량에 따라 고분자의 열적성질과 세라믹 수율이 달라짐을 알 수 있었다. PDMS를 420℃에서 10시간 동안 반응시킬 때 비교적 단분산 분자량 분포를 가지며, 저분자체와 비용해성 PCS가 최소로 생성되고 우수한 가공성을 가진 중간 분자량 분포(Mn=4,000)PCS가 최대로 얻어졌다.
Polycarbosilane(PCS) as a SiC precursor was synthesized from the rearrangement reaction of polydimethylsilane(PDMS) in an autoclave, which prepared by dehalocoupling reaction of dichlorodimethylsilane. After fractional precipitation into three fractions in n-hexane-methanol mixture, they were characterized by FT-IR, NMR, GPC, TGA/DSC and XRD, and compared with the commercial product. We found that the molecular weight distributions of the PCS depended on the reaction pressures, temperatures and the reaction times, and affected thermal property and ceramic yield of the polymer. The monodispersed PCS containing less amount of oligomers and nonsoluble products was propared by reaction of PDMS at 420℃ for 10 hrs, and it also rave the greatest amount of medium molecular weight(Mn=4,000) fraction.
  1. Hench L, West JK, Chem. Rev., 90, 33 (1992) 
  2. Clark DE, Vlrich DR, Better Ceram. Thourgh Chem. I-IV, 1984-1990 (1984)
  3. Miller RD, Michl J, Chem. Rev., 89, 1359 (1989) 
  4. Schilling CL, Wesson JP, Williams TC, Ceram. Bull., 62, 912 (1993)
  5. Miller RD, Thomson D, Sooriyakumaran R, Fickes GN, J. Polym. Sci. A: Polym. Chem., 29, 813 (1991) 
  6. Peuckert M, Vaahs T, Bruck M, Adv. Mater., 2, 398 (1990) 
  7. Yajima S, Okamura K, Shishido T, Hasegawa Y, U.S. Patent, 4,267,211 (1981)
  8. Baney RH, Burns GT, Lewin JH, European Patent, 0251 678 A2 (1987)
  9. Yajima S, Okamura K, Hasegawa Y, Yamamura T, U.S. Patent, 4,336,215 (1982)
  10. Yajima S, Iwai T, Yamamura T, Okamura K, Hasegawa Y, J. Mater. Sci., 16, 1349 (1981) 
  11. Yajima S, Shishido T, Okamura K, Am. Ceram. Soc. Bull., 56, 1060 (1977)
  12. Mu Y, Laine RM, Harrod JF, Appl. Org. Chem., 8, 95 (1994) 
  13. Yajima S, Okamura K, Hayashi J, J. Am. Ceram. Soc., 58, 1209 (1975)
  14. Yajima S, Shishido T, Okamura K, Ceram. Bull., 50(12) (1977)
  15. Laine RM, Babnneau F, Chem. Mater., 5, 260 (1993) 
  16. Carlsson DJ, Cooney JD, Ganthier S, Warsfold DJ, J. Am. Ceram. Soc., 73, 237 (1990) 
  17. Bouillon E, Railler R, Naslain R, Bacque E, Pillot JP, Birat M, Dunogues J, Houng PV, Chem. Mater., 3, 356 (1991) 
  18. Corriu RJP, Leclercq D, Mutin PH, Plareix J, Vinox A, Organometallics, 12, 454 (1993) 
  19. Hasegawa Y, Okamura K, J. Mater. Sci., 18, 3633 (1983) 
  20. Bouillon E, Langlais F, Pailler R, Naslain R, Cruege F, Huong PV, Sarthou JC, Delpuech A, Monthioux M, Oberlin A, J. Mater. Sci., 26, 1333 (1991)