화학공학소재연구정보센터
Bioresource Technology, Vol.162, 259-265, 2014
Hybrid sequential treatment of aromatic hydrocarbon-polluted effluents using non-ionic surfactants as solubilizers and extractants
A treatment train combining a biological and a physical approach was investigated for the first time in order to remediate polycyclic aromatic hydrocarbons (PAHs)-polluted effluents. Given the hydrophobic nature of these contaminants, the presence of non-ionic surfactants is compulsory to allow their bioavailability. The presence of these surfactants also entails an advantage in order to ease contaminant removal by the formation of aqueous two-phase systems (ATPS). The segregation ability of environmentally benign salts such as potassium tartrate, citrate, and oxalate was discussed for extracting phenanthrene (PHE), pyrene (PYR), and benzo[a] anthracene (BaA). The biological remediation efficiency reached circa 60% for PHE and PYR, and more than 80% for BaA. The coupling of ATPS subsequent stage by using potassium citrate allowed increasing the total PAH remediation yields higher than 97% of PAH removal. The viability of the proposed solution was investigated at industrial scale by using the software tool SuperPro Designer. (C) 2014 Elsevier Ltd. All rights reserved.