화학공학소재연구정보센터
Chemical Engineering and Processing, Vol.67, 111-119, 2013
Simulation study on a reactive distillation process of methyl acetate hydrolysis intensified by reaction of methanol dehydration
Methyl acetate (MeOAc) recovery from the polyvinyl alcohol (PVA) production is a difficult and heavy energy consuming process. In this work, a reactive distillation (RD) process of MeOAc hydrolysis intensified by methanol (MeOH) dehydration, as an auxiliary reaction, was proposed. Two different feeds with the mole ratio of MeOAc to MeOH at 1:1 and 1:9 were studied, and the effect of the operating pressure, the feed location and the reflux ratio on the RD column was analyzed. The simulations of reactive distillation were performed using a three phase non-equilibrium model implemented by gPROMS. As the limit of the reaction rate of MeOH dehydration, it is impossible to get 100% conversion of MeOAc and MeOH by a single RD column. Therefore, two novel processes for recovery of methyl acetate in PVA production were developed. The simulation results show that the high purity of dimethyl ether (DME) could be achieved with a complete conversion of MeOAc, and a large amount of energy demand and equipment costs can be reduced. (C) 2012 Elsevier B.V. All rights reserved.