화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.2, 243-248, April, 1998
모의 방사성 폐액에서 아스코르빈산에 의한 Pd의 침전 분리
Separation of Palladium Precipitate Formed by Ascorbic Acid in a Simulated Radioactive Liquid Waste
초록
본 연구에서는 아스코르빈산을 이용하여 다성분계(Pd, Ru, Rh, Nd, Cs, Sr, Fe, Ni, Zr, Mo)의 모의고준위폐액 내에 있는 Pd을 선택적으로 침전 분리할 수 있었으며, 질산농도 0.5M에서는 0.04M의 아스코르빈산을 첨가함으로써 99.5% 이상의 Pd을 침전 분리시킬 수 있었다. 아스코르빈산에 의한 Pddldhs의 환원 반응은 질산농도가 중요한 역할을 하며, 질산농도가 증가할수록 Pd의 침전율은 감소하였다. 용액의 질산농도가 높고 아스코르빈산의 첨가량이 적은 경우 생성된 Pd 침전물은 평형에 도달하면서 재용해 현상이 나타났다. 생성된 Pd 침전물은 모의용액의 성분계와 관계없이 Pd금속 결정으로 형성되었으며, 1.0㎛ 이하의 입자가 응집된 형태로 나타났다.
This study investigated the separation and the property of palladium precipitate formed by ascorbic acid in a simulated radioactive liquid waste, which was composed of 10 elements((Pd, Ru, Rh, Nd, Cs, Sr, Fe, Ni, Zr, Mo). Pd was separated selectively by using reduction characteristics of metal ions contained in the simulated waste with ascorbic acid. When the nitric acid concentration was 0.5M, the Pd over 99.5% was precipitated by adding 0.04M ascorbic acid. Nitric acid concentration is important at the reduction reaction of Pd ion. The precipitation yield of Pd was decreased as the concentration of nitric acid was increased. The Pd precipitate was re-dissolved in reaching at an equilibrium when the concentration of nitric acid was high and ascorbic acid was added with a small amount. The Pd precipitate formed by ascorbic acid was Pd was Pd metal and was aggregated by particles less than 1.0 ㎛.
  1. Yoo JH, KAERI/RR-1632/95 (1996)
  2. Jensen GA, Rohrmann CA, Perrigo LD, PNL-SA-8328 (1980)
  3. Jensen GA, PNL-SA-12972 (1985)
  4. Jensen GA, Platt AM, Mellinger GB, Nucl. Technol., 65, 305 (1984)
  5. Smith FJ, McDuffie HF, Sep. Sci. Technol., 16, 1071 (1981)
  6. McIsaac LD, Sep. Sci. Technol., 17, 387 (1982)
  7. Schults WW, RHO-SA-51 (1980)
  8. Panesko JV, ARH-1552 (1970)
  9. Kondo Y, Kubota M, J. Nucl. Sci. Technol., 29, 140 (1992)
  10. Carlin WW, Darlington WB, U.S. Patent, 3,922,231 (1975)
  11. Kim EH, J. Nucl. Sci. Technol., 34, 283 (1997)
  12. Kubota M, Fukase T, J. Nucl. Sci. Technol., 17, 783 (1980)
  13. Lee EH, Hwang DS, Kim KW, Shin YJ, Yoo JH, J. Korean Ind. Eng. Chem., 6(3), 404 (1995)
  14. Martinez P, Zuluaga J, Uribe D, Van Eldik R, Inorg. Chim. Acta, 136, 11 (1987) 
  15. Pelizzetti E, Mentasti E, Pramauro E, Inorg. Chem., 17, 1181 (1978) 
  16. Sanehi R, Mehrotra RM, Mushran SP, J. Inorg. Nucl. Chem., 37, 1753 (1975) 
  17. Williams NH, Yandell JK, Aust. J. Chem., 35, 1133 (1982)
  18. Weast RC, "CRC Handbook of Chemistry and Physics," 70 ed., D-151, CRC Press (1989)
  19. Creutz C, Inorg. Chem., 20, 4449 (1981)