Chemical Engineering Journal, Vol.181, 624-629, 2012
Removal of nitric oxide in rotating packed bed by ferrous chelate solution
As a major pollutant flue gas, nitric oxide (NO) emission has received great attention of the world. Various technologies have been developed to reduce NO emission. Among them, wet scrubbing approach seems to be promising concept. Ferrous chelate solution has been demonstrated as a suitable and efficient option in flue gas denitrification process due to its high reaction rate with NO and good regeneration ability. However, NO absorption rate is strongly affected by mass transfer limitation of NO and Fe-II(EDTA) solution in traditional reactors. In this study, RPB is firstly introduced as a gas-liquid reactor to enhance the NO removal efficiency by Fe-II(EDTA) solution. Preliminary experimental results are presented on the absorption of NO by investigating the effects of operating parameters on NO removal efficiency in RPB. The removal efficiency peaks when the pH value of the absorbent reaches 7. The optimum temperature for this gas-liquid absorption system is in the range of 293-303 K. When the gravity level of the RPB is higher than 150 g, the removal efficiency could reach 87%. In addition, the NO removal efficiency decreases with the increase of the gas-liquid ratio. The simultaneous increase of the gas and the liquid flow rates has no obvious effect on the removal efficiency. The obtained results imply a great potential of RPB in the removal of NO from flue gases. (C) 2011 Elsevier B.V. All rights reserved.