화학공학소재연구정보센터
Journal of Chemical Physics, Vol.103, No.23, 10015-10029, 1995
Classical Description of Nonadiabatic Photoisomerization Processes and Their Real-Time Detection via Femtosecond Spectroscopy
A classical-path approach to the description of photoinduced isomerization dynamics as well as the interrelated electronic and vibrational relaxation processes is outlined. Adopting a three-mode model of photoisomerization that has been recently proposed by Seidner and Domcke (Chem. Phys. 186, 27 (1994)), we perform detailed numerical studies and compare the results of the classical simulations to available exact quantum-mechanical results. It is shown that the classical model reproduces semiquantitatively time-dependent diabatic and adiabatic electronic population probabilities, state-specific torsional wave functions, and energy contents of vibrational degrees of freedom. Furthermore it is demonstrated that the classical approach is able to simulate at least qualitatively time- and frequency-resolved pump-probe spectra of these processes. Tn accordance with exact quantum calculations, the classical simulations reveal the decay of the stimulated emission of the reactants and the delayed onset of the absorption of the photoproducts. To demonstrate the capability of the classical approach, the three-mode model of Seidner et al. is augmented by a hundred weakly-coupled harmonic modes. This allows to roughly simulate the relaxation dynamics of a chromophore interacting with a solvent. The simulations reveal that the time evolution of the full system within the first few hundred femtoseconds is quite similar to the case of the bare three-mode model. For later times, however, the dynamics of the three-mode model becomes quasistationary, whereas the calculations for the full system reflect the redistribution of the excess energy of the reaction mode into the bath nuclear degrees of freedom. It is found that the quantum yield of the cis-tuans photoreaction depends to a large extent on the specific chromophore-solvent coupling employed, as it governs directly the competition of the various relaxation pathways. Simulations of the corresponding time- and frequency-resolved pump-probe spectra reveal that the cooling of the vibrationally hot photoproducts in the solvent is mainly reflected in a blue shift and a narrowing of the width of the absorption spectrum.