화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.4, 463-468, August, 1998
염산용액내에 황산 첨가에 의한 알루미늄의 교류에칭 특성
Effect of Sulfuric Acid Addition on the Aluninum AC Etching in HCI Solution
초록
알루미늄의 부식에 있어서 HCI 용액내에 황산을 첨가하는 경우 황산이온의 화학적 흡착에 의한 부식억제 효과가 나타나며, CV (cyclic vonltammetry) 실험결과 황산이온은 핏트내부에 보호성 산화피막을 생성함으로서 에치핏트가 핏트내부와 알루미늄 표면에 함께 생성되어 핏트의 밀도가 증가하였다. 알루미늄 교류에칭시에 핏트분포는 황산이온의 농도와 환원전류량에 의하여 크게 영향을 받으며, 환원전류인가시 0.8 mc/cm2 이하의 전하량에서 핏트내부에 생성된 산화피막은 황산이온 농도의 증가에 따라 핏트발생에 대한 저항성이 중가하였으나, 0.8 mc/cm2 이상에서는 산화피막내에 국부적인 구조변화가 발생하며 황산이온 농도에 관계없이 산화피막의 파괴가 빠르게 진행되었다.
When sulfuric acid was added in HCl etching solution, corrosion of aluminum metal was inhibited by the chemical adsorption of sulfate ions. In the presence of SO4-2, cyclic voltammetry showed that the protective oxide film was formed on the inner surfaces of etch pits and, pit density was increased by nucleation on both the aluminum surface and the pits inside. Structure and distribution of etch pits found in AC etching of aluminum were strongly influenced by the concentratien of SO4-2 and the amount of cathodic pulse charging. Below 0.8 mC/cm2 of cathodic pulse charging, oxide films formed inside actively dissolving pits indicated the higher resistance to pit nucleation as the concentration of SO4-2 increases. However, the structural change of oxide films occurred above the 0.8 mC/cm2 charging and the effect of SO4-2 was minimized and it resulted in the rapid formation of etch pits.
  1. Kolotyrkin YM, J. Electrochem. Soc., 108, 209 (1961)
  2. Strehblow HH, Werkstoffe Korrosion, 35, 437 (1984) 
  3. Uhlig HH, Bohni H, J. Electrochem. Soc., 116, 906 (1969)
  4. Arai K, Suzuki T, Atsumi T, J. Electrochem. Soc., 132, 1667 (1985) 
  5. Thomson GE, Wood GC, Corrosion Sci., 18, 721 (1978) 
  6. Hibino A, Tamaki M, Watanabe Y, Oki T, Sumitomo, Light Metal Technical Reports, 33, 26 (1992)
  7. Dyer CK, Alwitt RS, J. Electrochem. Soc., 128, 300 (1981) 
  8. Alwitt RS, Uchi H, Beck TR, Alkire RC, J. Electrochem. Soc., 131, 13 (1981)
  9. Hebert KR, Alkire RC, J. Electrochem. Soc., 135, 2447 (1984) 
  10. Stevanovic RM, Despic AR, Drazic DM, Electrochim. Acta, 33, 397 (1988) 
  11. vandeVen EPGT, Koelmans H, J. Electrochem. Soc., 123, 143 (1976)