화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.9, No.4, 497-503, August, 1998
귀금속 촉매를 이용한 1.2-Dichloroethane의 산화분해에 관한 연구
Catalytic Oxidation of 1.2-Dichloroethane on Precious Metal Catalysts
초록
알루미나에 담지한 귀금속 촉매를 이용하여 1.2-dichloroethane의 산화분해반응을 수행하였다. 실험결과 전환율은 Ru〉Pt〉Pd Rh 순으로 높게 나타났으나, 완전산화 반응이 일어날 때의 주생성물인 Co2로의 전환율 및 선택도를 기준으로 활성을 비교할 때 Pt/alumina보다 활성이 높게 나타났다. Co2 및 vinyl chloride가 반응 주생성물로 검출되었는데, 반응 생성물 분포로부터 1.2-dichloroethane의 분해반응 경로는 1단계로 dehydrochlorination에 의해 vinyl chloride가 생성된 후 2단계로 vinyl chloride가 C2로 oxidation됨을 알 수 있었다. 염소를 포함하고 있는 반웅 주생성물인 HCl의 영향을 살펴보기 위하여 반응물에 HCl을 첨가하여 반응을 수행하였는데 300 ℃ 이하에서는 HCl이 촉매 표면에 흡착함에 따라 표면의 산도를 증가시켜 1.2-dichloroethane의 전환율은 증가하지만 300 ℃ 이상에서는 HCl과 촉매 표면과의 상호작용이 약해져 전환율에는 큰 영향을 주지 않았다. 또한 촉매 표면에 가역적으로 흡착된 HCl은 1.2-dichloroethane의 C2로의 완전산화 반응을 방해함을 확인하였다.
The catalytic oxidation of 1.2-dichloroethane was investigated over precious metal supported on alumina using a fixed bed microreactor. Among the catalysts tested, the conversion of 1.2-dichloroethane decreased in the following order : Ru〉Pt〉Pd≒Rh and Pt was found to be the most active catalyst for the complete oxidation of 1.2-dichloroethane to CO2. Major products containing carbon were vinyl chloride and CO2 at temperature ranging from 200 to 400 ℃. The presence of vinyl chloride in products suggests that the first step in the oxidation of 1.2-dichloroethane is dehydrochlorination and the second is oxidation of vinyl chloride to CO2. To investigate the effect of HCl on the activity of the complete oxidation, some exreriments were conducted by adding HCl to the feed. The presence of HCl increased the conversion of 1.2-dichloroethane below 300℃ owing to the increase of surface acidity, but it didn't affect the conversion above 300℃. The reversible adsorption of HCI onto catalyst surface inhibited the complete oxidation to CO2.
  1. Shirley WA, Chem. Eng. Prog., 90(7), 26 (1994)
  2. Bradstreet JW, "Hazardous air Pollutants: Assessment, Liabilities and Regulatory Compliance," Noyes Publications (1995)
  3. Mycock JC, McKenna JD, Theodore L, "Handbook of Air Pollution Control Engineering and Technology," Lewis Publishers (1995)
  4. Moretti EC, Mukhopadhyay N, Chem. Eng. Prog., 20 (1993)
  5. Ruddy EN, Carroll LA, Chem. Eng. Prog., 28 (1993)
  6. Chu W, Windawi H, Chem. Eng. Prog., 92(3), 37 (1996)
  7. Spivey JJ, Ind. Eng. Chem. Res., 26, 2165 (1987) 
  8. Windawi H, Wyatt M, Platinum Metal Rev., 37(4), 86 (1993)
  9. Bickle GM, Suzuki T, Mitarai Y, Appl. Catal. B: Environ., 4(2-3), 141 (1994) 
  10. Rossine JA, Farris MM, Ind. Eng. Chem. Res., 32, 1024 (1993) 
  11. Chen BS, Bai CS, Cook R, Wright J, Wang C, Catal. Today, 30(1-3), 15 (1996) 
  12. Manning MP, Hazardous Waste, 1(1), 41 (1984)
  13. Bond GC, Sadeghi N, J. Appl. Chem. Biotechnol., 25, 241 (1975)
  14. Gtenger HG, Buzan GE, Appl. Catal. B: Environ., 2, 117 (1993) 
  15. Weldon J, Senkan SM, Combust. Sci. Technol., 47, 229 (1986)
  16. Musick JK, Williams FW, Ind. Eng. Chem. Prod. Res. Dev., 13(3), 175 (1974) 
  17. Petrosius SC, Drago RS, Young V, J. Am. Chem. Soc., 115, 6131 (1993) 
  18. Ramanathan K, Spivey JJ, Combust. Sci. Technol., 63, 247 (1989)
  19. Immamura S, Tarumoto H, Ishida S, Ind. Eng. Chem. Res., 28, 1449 (1989) 
  20. Imamura S, Ikeda T, Ishida S, 일본화학회지, 1, 139 (1989)
  21. Chatterjee S, Greene H, J. Catal., 130, 76 (1991) 
  22. Ramachandran B, Greene HL, Chatterjee S, Appl. Catal. B: Environ., 8(2), 157 (1996) 
  23. Burch R, Loader PK, Urbano FJ, Catal. Today, 27(1-2), 243 (1996) 
  24. Sare EJ, Lavanish JM, U.S. Patent, 4,039,623 (1977)
  25. Sare EJ, Lavanish JM, U.S. Patent, 4,045,538 (1977)
  26. Mendyka B, Rutkowski JD, Environmental Protection Engineering, 10(1), 5 (1984)
  27. Mendyka B, Piotrowska AM, Syczewska K, Catal. Today, 11, 597 (1992) 
  28. Spivey JJ, Butt JB, Catal. Today, 11, 465 (1992) 
  29. Yang K, Reedy JD, U.S. Patent, 4,059,676 (1977)