Chemical Engineering Science, Vol.100, 266-278, 2013
Liquid dispersion in packed columns: Experiments and numerical modeling
In order to optimize the design of gas-liquid packed columns used in distillation or in absorption processes, it is of high importance to be able to predict liquid dispersion. Indeed, dispersion phenomena will impact the choice and design of liquid distributing devices and the height of the packed beds. For this, one mainly relies on industrial feedback and on some experimental results obtained at laboratory scale which cannot be directly extrapolated since their geometric characteristics are at least one order of magnitude less than industrial columns in terms of columns diameter and height. To fill this gap CFD simulation tools should be more used since they can apply to any scale. However the latter option requires adequate modeling in particular for dispersion forces which are little studied due to the lack of data for validation. The present paper aims at developing, from original dispersion experimental measurements, closure laws that can be implemented in CFD codes. Liquid spreading from a source point has been investigated for Mellapak 250.X packing via gamma-ray tomography measurements. Closure laws are discussed from a simple 1D model which enables to go further within the Eulerian two-fluid framework with original user-defined functions and associated models that take into account liquid dispersion in the packed bed. The latter is modeled as a porous medium with appropriate closure laws. The comparison between experiments and CFD results shows that the present approach is adequate and should be further developed in order to be more precise and adapted to more packings. (C) 2013 Elsevier Ltd. All rights reserved.