화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.1, 6-11, February, 1999
기화성방청제 Dialkylamine (di-)nitrobenzoates 합성 및 방청성능
Synthesis and Performance of Dialkylamine (di-)nitrobenzoates for Vapor Corrosion Inhibitor
초록
방청제로 dialkylaminc (di-)nitrobenzoates 14개 화합물을 합성하고 첨가제 효과와 함께 방청성능을 조사하였다. 합성화합물은 원소분석, FT-IR, 1H-NMR 분석으로 확인하였으며, 합성한 화합물과 첨가제 [(NH4)2CO3, NaHCO3]의 방청능은 방청제를 1M Na2SO4 용액에 1%(w/v)용해시켜 potentiostatic method로 분극실험하여 조사하였다. 철에 대해 dialkylamine 3, 5-dinitrobenzoates보다 dialkylamine 4-nitrobenzoates 부동태화 전류밀도 (ip)가 작았으며, diethylamine 4-nitrobenzoate 용액에서 낮은 값 (ip; 4.78 mA/cm2)을 나타내었다. 비철에 대한 ip값은 dialkylamine 3, 5-dinitrobenzoates가 작았고 dipropylamine 3, 5-dinitrobenzoate와 hexamethyleneimine 3, 5-dinitrobenzoate가 낮은 값 (ip; 36, 37 mA/cm2)을 나타냈다. 방청제에 (NH4)2CO3와 NaHCO3 첨가효과는 철에 대해 높은 부식억제 효과를 나타냈으나, 비철에서는 좋은 결과를 얻지 못하였다. 철용 방청제 diethylamine 4-nitrobenzoate와 (NH4)2CO3, NaHCO3의 최적 혼합비율은 4:6과 5:5이며, 부동태화 전류밀도 (ip)는 0.26, 0.85 mA/cm2의 최소값을 각각 나타내었다.
Dialkylamine (di-)nitrobenzoates as vapor corrosion inhibitor were synthesized with dialkylamines and (di-)nitrobenzoic acids. The compounds were analyzed by elemental analyzer, FT-IR and 1H-NMR spectrophotometer. Corrosion inhibition of synthetic compounds and additives [(NH4)2CO3, NaHCO3] against ferrous and non-ferrous metal was investigated by potentiostatic method [1% (w/v) corrosion inhibitor in 1M Na2SO4 aqueous solution] respectively. For corrosion inhibition of ferrous metal, dialkylamine 4-nitrobenzoates were better inhibitor than dialkylamine 3, 5-dinitrobenzoates, the passivating current density (ip) of dialkylamine 4-nitrobenzoate was shown 4.78 mA/cm2. While, for non-ferrous metal, dialkylamine 3, 5-dinitrobenzoates were better, those of dipropylamine 3, 5-dinitrobenzoate and hexamethyleneimine 3, 5-dinitrobenzoate were shown 36 and 37 mA/cm2. Additive effect of (NH4)2CO3 and NaHCO3 for corrosion inhibition of ferrous metal was excellent but that of non-ferrous metal was not. Optimum ratios of diethylamine 4-nitrobenzoate with (NH4)2CO3 and NaHCO3 were 4:6 and 5:5 (V/V), and passivating current densities (ip) of the mixtures were shown 0.26 and 0.85 mA/cm2, respectively.
  1. 김면섭, 한국부식학회지, 9, 37 (1980)
  2. Rozenfeld IL, Persiantseva BP, Terentiev PB, Corrosion, 20, 222t (1964)
  3. 김면섭, 한국부식학회지, 12, 31 (1983)
  4. Man CA, Trans. Electrochem. Soc., 72, 333 (1937)
  5. Hackerman N, Sudbury JD, J. Electrochem. Soc., 97, 109 (1950)
  6. Hackerman N, Sudbury JD, Ind. Eng. Chem., 46, 523 (1954) 
  7. Hackerman N, Sudbury JD, Corrosion, 18, 332t (1962)
  8. Trabanelli G, Carassiti V, "Advances in Corrosion Science and Technology," 1, Plenum Press, 147 (1970)
  9. Scully JC, "The Fundamentals of Corrosion," 3rd Ed., Pergamon Press, Oxford (1990)
  10. Rozenfeld IL, "Corrosion Inhibitors," McGraw-Hill Inc., New York, 297 (1981)
  11. U.S. Patent, 3,791,855 (1974)
  12. Japan Patent, 86-15988 (1986)
  13. Japan Patent, 87-109987 (1987)
  14. Arnold E, Evans UR, "An Introduce to Metallic Corrosion," 3rd Ed. (1981)
  15. Wolef JK, Temple KL, J. Am. Chem. Soc., 70, 1411 (1948)
  16. Rozenfeld IL, "Corrosion Inhibitors," McGraw-Hill Inc., New York, 6 (1981)
  17. Miksic BA, Miller RH, Ann. Univ. Ferrara. Sez. 5 Suppl., 217 (1980)
  18. Hackerman N, Snavely ES, Panye JS, J. Electrochem. Soc., 113, 677 (1966)
  19. 김면섭, 한국부식학회지, 14, 47 (1985)