Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.1, 6-11, February, 1999
기화성방청제 Dialkylamine (di-)nitrobenzoates 합성 및 방청성능
Synthesis and Performance of Dialkylamine (di-)nitrobenzoates for Vapor Corrosion Inhibitor
초록
방청제로 dialkylaminc (di-)nitrobenzoates 14개 화합물을 합성하고 첨가제 효과와 함께 방청성능을 조사하였다. 합성화합물은 원소분석, FT-IR, 1H-NMR 분석으로 확인하였으며, 합성한 화합물과 첨가제 [(NH4)2CO3, NaHCO3]의 방청능은 방청제를 1M Na2SO4 용액에 1%(w/v)용해시켜 potentiostatic method로 분극실험하여 조사하였다. 철에 대해 dialkylamine 3, 5-dinitrobenzoates보다 dialkylamine 4-nitrobenzoates 부동태화 전류밀도 (ip)가 작았으며, diethylamine 4-nitrobenzoate 용액에서 낮은 값 (ip; 4.78 mA/cm2)을 나타내었다. 비철에 대한 ip값은 dialkylamine 3, 5-dinitrobenzoates가 작았고 dipropylamine 3, 5-dinitrobenzoate와 hexamethyleneimine 3, 5-dinitrobenzoate가 낮은 값 (ip; 36, 37 mA/cm2)을 나타냈다. 방청제에 (NH4)2CO3와 NaHCO3 첨가효과는 철에 대해 높은 부식억제 효과를 나타냈으나, 비철에서는 좋은 결과를 얻지 못하였다. 철용 방청제 diethylamine 4-nitrobenzoate와 (NH4)2CO3, NaHCO3의 최적 혼합비율은 4:6과 5:5이며, 부동태화 전류밀도 (ip)는 0.26, 0.85 mA/cm2의 최소값을 각각 나타내었다.
Dialkylamine (di-)nitrobenzoates as vapor corrosion inhibitor were synthesized with dialkylamines and (di-)nitrobenzoic acids. The compounds were analyzed by elemental analyzer, FT-IR and 1H-NMR spectrophotometer. Corrosion inhibition of synthetic compounds and additives [(NH4)2CO3, NaHCO3] against ferrous and non-ferrous metal was investigated by potentiostatic method [1% (w/v) corrosion inhibitor in 1M Na2SO4 aqueous solution] respectively. For corrosion inhibition of ferrous metal, dialkylamine 4-nitrobenzoates were better inhibitor than dialkylamine 3, 5-dinitrobenzoates, the passivating current density (ip) of dialkylamine 4-nitrobenzoate was shown 4.78 mA/cm2. While, for non-ferrous metal, dialkylamine 3, 5-dinitrobenzoates were better, those of dipropylamine 3, 5-dinitrobenzoate and hexamethyleneimine 3, 5-dinitrobenzoate were shown 36 and 37 mA/cm2. Additive effect of (NH4)2CO3 and NaHCO3 for corrosion inhibition of ferrous metal was excellent but that of non-ferrous metal was not. Optimum ratios of diethylamine 4-nitrobenzoate with (NH4)2CO3 and NaHCO3 were 4:6 and 5:5 (V/V), and passivating current densities (ip) of the mixtures were shown 0.26 and 0.85 mA/cm2, respectively.
- 김면섭, 한국부식학회지, 9, 37 (1980)
- Rozenfeld IL, Persiantseva BP, Terentiev PB, Corrosion, 20, 222t (1964)
- 김면섭, 한국부식학회지, 12, 31 (1983)
- Man CA, Trans. Electrochem. Soc., 72, 333 (1937)
- Hackerman N, Sudbury JD, J. Electrochem. Soc., 97, 109 (1950)
- Hackerman N, Sudbury JD, Ind. Eng. Chem., 46, 523 (1954)
- Hackerman N, Sudbury JD, Corrosion, 18, 332t (1962)
- Trabanelli G, Carassiti V, "Advances in Corrosion Science and Technology," 1, Plenum Press, 147 (1970)
- Scully JC, "The Fundamentals of Corrosion," 3rd Ed., Pergamon Press, Oxford (1990)
- Rozenfeld IL, "Corrosion Inhibitors," McGraw-Hill Inc., New York, 297 (1981)
- U.S. Patent, 3,791,855 (1974)
- Japan Patent, 86-15988 (1986)
- Japan Patent, 87-109987 (1987)
- Arnold E, Evans UR, "An Introduce to Metallic Corrosion," 3rd Ed. (1981)
- Wolef JK, Temple KL, J. Am. Chem. Soc., 70, 1411 (1948)
- Rozenfeld IL, "Corrosion Inhibitors," McGraw-Hill Inc., New York, 6 (1981)
- Miksic BA, Miller RH, Ann. Univ. Ferrara. Sez. 5 Suppl., 217 (1980)
- Hackerman N, Snavely ES, Panye JS, J. Electrochem. Soc., 113, 677 (1966)
- 김면섭, 한국부식학회지, 14, 47 (1985)