Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.1, 154-159, February, 1999
TiO2 광-촉매 반응에 의한 Cu(II)-EDTA의 산화(I) -TiO2량과 pH의 영향-
Oxidation of Cu(II)-EDTA by TiO2 Photo-Catalysis(I) -The Effects of TiO2 Loading & Initial pH of Solution-
초록
수중 금속이온 착화용 공업세정제를 비롯하여 산업적으로 다양한 용도로 폭넓게 사용되고 있는 EDTA (ethylenediaminetetraacetic acid)는 수처리시 금속이온들을 제거할 경우에 방해요인으로 작용하므로, EDTA를 우선적으로 분해하여 착화결합을 끊어야 금속이온들의 제거가 용이해진다. 본 연구에서는, TiO2 (Degussa P-25)를 사용하여 1.79 mM의 초기 Cu(II)-EDTA 수용액 농도와 20℃의 호기성 분위기 하에서, 촉매의 양과 초기의 수용액 pH가 Cu(II)-EDTA 착물의 산화에 미치는 영향을 고찰하였다. TiO2량이 2.0 g/L일 경우에 EDTA, Cu와 TOC 감소율이 최대로 나타났고, DETA의 촉매표면 흡착은 TiO2 표면전하에 의해 영향을 받으며 광-촉매 반응에 의한 EDTA의 분해는 광-조사전의 촉매표면 흡착에 의존하는 것으로 보였다.
EDTA (ethylenediaminetetraacetic acid), a chelating agent is most widely used in industrial applications, especially for cleaning of metals in water, frequently prohibits metal removal from water in conventional water treatment technologies. It could be easier to remove aqueous metal ions by the breakdown of DETA complexed bonds first. This study investigated the availability of TiO2 photo-catalysis for the aqueous phase oxidation of Cu(II)-EDTA, under an aerobic condition at 20℃ with TiO2 (Degussa P-25) and 1.79mM of Cu(II)-EDTA. When TiO2 loading was 2.0 g/L, the photo-catalytic oxidation of Cu(II)-EDTA was maximal. The tendency of EDTA adsorption onto the catalyst surface was affected by TiO2 surface charge, and the oxidation rate of Cu(II)-EDTA by photo-catalysis was shown to be dependent upon the tendency of EDTA adsorption before photo-irradiation.
Keywords:EDTA (ethylenediaminetetraacetic acid);TiO2;Photo-catalytic Oxidation;Water Treatment Technology
- Fujishima A, Honda K, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972)
- Ollis DF, Al-Ekabi H, Trace Metals in the Environment3: Photocatalytic Purification and Treatment of Water and Air, Elsevier, The Natherlands (1993)
- Serpone N, Pelizzetti E, Photocaalysis-Fundamentals and Applications, John Wiley & Sons, New York (1989)
- Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
- Turchi CS, Ollis DF, J. Catal., 122, 178 (1990)
- Frimmel FH, GWF Gas Wasserfach: Wasser/Abwasser 130, 106 (1989)
- Ayres JA, Decontamination of Nuclear Reactors and Equipment; Ronald Press: New York, p. 6-33 (1970)
- Thomas HM, Abhaya KD, Melissa F, Environ. Sci. Technol., 31(3), 475 (1997)
- Bhattacharyya D, Ku, Y. Sulfide Precipitation of Heavy Metals: U.S. Government Printing Office: Washington D.C., EPA-600/S2-84-023 (1984)
- Kari FG, Hilger S, Canonica S, Environ. Sci. Technol., 29, 1008 (1995)
- Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
- Legrini O, Oliveros E, Braun AM, Chem. Rev., 93, 671 (1993)
- Rajeshwar K, J. Appl. Electrochem., 25(12), 1067 (1995)
- Okamoto K, Yamamoto Y, Tanaka H, Tanaka M, Itaya A, Bull. Chem. Soc. Jpn., 58, 2015 (1985)
- Uchihara T, Matsumura M, Ono J, Tsubomura H, J. Phys. Chem., 94, 415 (1990)
- Loy L, Wolf EE, Sol. Energy, 34(6), 455 (1985)
- Kormann C, Bahnemann DW, Hoffmann MR, Environ. Sci. Technol., 25(3), 494 (1991)
- Stumm W, Morgan JJ, Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters, John Wiley & Sons, New York, p. 625 (1981)
- Nohana K, Hidaka H, Pelizzethi E, Serpone N, J. Photochem. Photobiol. A-Chem., 12, 265 (1997)
- Matthews RW, J. Catal., 111, 264 (1988)
- Matthews RW, J. Chem. Soc.-Faraday Trans., 1(80), 457 (1984)
- Fife DJ, Moore WM, Photochem. Photobiol., 29, 43 (1979)
- Mulazzani QG, Venturi M, Hoffman MZ, J. Phys. Chem., 89, 722 (1985)
- Kari FG, Ph.D. Thesis, No. 10698, Swiss Federal Institue of Technologt, ETH, Zurich (1994)
- Kari FG, Giger W, Water Res., Submitted for publication
- Chen D, Martell AE, McManus D, Can. J. Chem., 73, 264 (1995)
- Abdullah M, Low GKC, Matthews RW, J. Phys. Chem., 94, 6820 (1990)
- Borgarello E, Harris R, Serpone N, Nouv. J. Chim., 9, 743 (1985)