화학공학소재연구정보센터
Electrochimica Acta, Vol.103, 179-187, 2013
Near-substrate composition depth profile of direct current-plated and pulse-plated Fe-Ni alloys
Composition depth profiles of d.c.-plated and pulse-plated Fe-Ni alloys have been investigated with the reverse depth profile analysis method. When d.c. plating is applied, the mole fraction of iron near the substrate is higher than during steady-state deposition since iron is preferentially deposited beside nickel and the achievement of the steady-state deposition condition takes time. The steady-state composition was achieved typically after depositing a 90-nm-thick alloy layer. In the pulse-plating mode, samples with nearly uniform composition could be obtained at a duty cycle of 0.2 or smaller, and a continuous change in the composition profile could be seen as a function of the duty cycle above this value. A constant sample composition was achieved with pulse-plating in a wide peak current density interval. The composition depth profile was also measured for a wide range of Fe2+ concentration. The different characteristics of the composition depth profile as a function of the deposition mode can be explained mostly in terms of mass transport effects. The elucidation of the results is fully in accord with the kinetic models of anomalous codeposition and with the assumption of the superposition of a stationary and a pulsating diffusion layer. The results achieved help to identify the conditions for the deposition of ultrathin magnetic samples with uniform composition along the growth direction. (C) 2013 Elsevier Ltd. All rights reserved.