화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.3, 415-418, May, 1999
튜브식 겔형 납축전지에 있어서 활물질 밀도에 따른 싸이클 수명 특성
Influence of Filling Density in the Positive Active-material on the Cycle-life Performance of the Tubular Type Gelled Valve Regulated Lead Acid Batteries
초록
튜브식 양극판과 겔전해액을 사용한 VRLA(valve regulated lead-acid) 전지에 있어서 양극 활물질 (active material)의 충전 밀도에 따른 충·방전 싸이클 특성을 고찰하였다. VRLA전지에 사용된 양극 활물질의 밀도는 각각 3.2 g/mL, 3.4 g/mL 이었다. VRLA전지는 IU 방식 (Imax = 0.2 C10/10, 상한 전압 2.40 V/cell)의 충전과, D.O.D 100%/C5의 방전 방법으로 충·방전 싸이클 수명 시험을 실시하였다. 시험은 25±1℃의 항온항습기에서 실행하였다. 시험 결과 활물질 밀도별 VRLA전지의 초기 용량은 밀도와 무관하였다. 즉 3.4 g/mL에서 가장 우수하였고, 3.6 g/mL에서 가장 낮았다. 충·방전 싸이클에서의 특성은 3.6 g/mL인 전지는 3.4 g/mL와 거의 유사하였고, 3.2 g/mL보다는 우수하였다. 또한 VRLA 전지의 수분고갈 및 열화는 양극 활물질의 충전 밀도가 높을수록 적었다. 이상으로 충·방전 싸이클용 VRLA전지의 양극 활물질의 밀도는 3.4∼3.6 g/mL이 적절한 것으로 판단되었다.
The characteristics of VRLA (valve regulated lead-acid) battery with the tubular positive plate and gel type electrolyte were examined as a function of active material filling density. The filling density of positive plate was 3.2 g/mL, 3.4 g/mL, and 3.6 g/mL, respectively. These VRLA batteries were cycled with 100% DOD (depth of discharge) at the C5/5 rate, followed by IU-type recharge with Imax = 0.2 C10/10 and a final voltage V = 2.40 V/cell. The test was performed in a thermostatic room at 25±1℃. The result indicated that the initial capacity was independent of active material filling density, i.e., the highest initial capacity was 3.4 g/mL of filling density and the lowest was 3.6 g/mL. On aspect of the cycle-life performance of the VRLA battery, the filling density of 3.6 g/mL was similar to that of 3.4 g/mL in the positive plate, and both were higher than that of 3.2 g/mL. Water-loss and degradation of the VRLA battery were decreased according to an increase of the filling density in the positive plate. The optimum filling density of the active material was 3.4∼3.6 g/mL.
  1. 김호기, "에너지·자원 기술개발 요람," 대종문화인쇄 (1998)
  2. Newnham RH, Baldsing WGA, J. Power Sources, 66, 27 (1997) 
  3. Prout L, J. Power Sources, 46, 73 (1993) 
  4. Bode H, "Lead-Acid Batteries," (1997)
  5. Bagshaw NE, J. Power Sources, 31, 23 (1990) 
  6. Tuphorn H, J. Power Sources, 31, 57 (1990) 
  7. Wagner R, J. Power Sources, 67(1-2), 163 (1997) 
  8. Cole JF, J. Power Sources, 53, 239 (1995) 
  9. Prengaman RD, J. Power Sources, 33, 13 (1991) 
  10. Prengaman RD, J. Power Sources, 53, 207 (1995) 
  11. Ferreira AL, Lingscheidt HA, J. Power Sources, 67(1-2), 291 (1997) 
  12. Tuphorn H, J. Power Sources, 40, 47 (1992)