화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.4, 515-522, June, 1999
개질 비대칭 폴리에테르이미드막을 통한 물-이소프로판올 혼합물 투과증발 분리: NaOH용액의 농도와 개질반응 시간에 따른 몰폴로지 변화
Pervaporation Separation of Water-isopropanol Mixtures through Modified Asymmetric Polyetherimide Membrane: the Effect of NaOH Concentration and Modification Reaction Times on the Morphology of the Morphology of the Modified Membranes
초록
상분리 방법으로 비대칭 폴리에테르이미드막을 제조하였고, 수산화나트륨 수용액으로 막의 표면층을 개질 했을 때의 몰폴로지 변화를 반응기간과 반응용액 농도에 대하여 살려보았다. 표면층 몰롤로지는 개질 용액의 농도가 증가함에 따라 치밀한 구조에서 둥근 입자상의 형태로 변화되었고, 개질 시간이 증가될수록 치밀 영역이 증가되었다. 그러나 반응 농도가 아주 높거나 장시간 개질을 하면 비대칭 폴리에테르이미드막의 표면에서 치밀 구조층이 없어지는 결과를 나타냈다. 결과적으로, 표면의 몰폴로지는 개질 용액의 농도와 시간에 따라 크게 좌우됨을 알 수 있었다. 이러한 결과는 폴리에테르이미드가 수산화나트륨에 의해서 폴리아믹산으로 가수분해되면서 나타나는 현상으로 추측되었다.
Asymmetric polyetherimide membrane were prepared by phase inversion method, and the effects of NaOH concentration and reaction time on the morphology change of the polyetherimide membranes were studied . The morphology of skin layers varied from dense structure to sphere structure with increasing concentration of modification solution. The thickness of dense layer increased with increasing reaction time. However, when either the concentration of modifying solution was very high or the reaction time was very long, the dense layers of the asymmetric membrane were disappeared. From these results, it was found that the surface morphology of the asymmetric polyetherimide membranes depended strongly on the modification conditions such as concentration of modification solution and reaction time. These results might be explained by the hydrolysis reaction of polyetherimide into polyamic acid by the NaOH solution.
  1. Seok DR, Kang SG, Huang ST, J. Membr. Sci., 33, 71 (1987) 
  2. Fleming HL, Slater CS, W.S.W. Ho and K.K. Sirkar (Eds.), "Membrane Handbook," Van Nostrand Reinhold, New York, 105 (1992)
  3. Neel J, "Pervaporation Membrane Separation Processes," R.Y.M. Huang Ed., Elsevier, Amsterdam, 1 (1991)
  4. Mulder MHV, Hendrikman JO, Wijmans JG, Smolders CA, J. Appl. Polym. Sci., 30, 2805 (1985) 
  5. Huang RY, Feng X, J. Membr. Sci., 84, 15 (1993) 
  6. Yanagishita H, Maejima C, Kitamoto D, Nakane T, J. Membr. Sci., 86(3), 231 (1994) 
  7. Loeb S, Sourirajan S, Report No. 60-60, University of California, Los Angeles, July (1960)
  8. Kesting RE, "Synthetic Polymeric Membranes," 2nd Ed., Chapter 2, John Wiley & Sons (1985)
  9. Lloyd DR, "Materials Science of Syntheic Membranes," ACM Series 269, Chapter 7 and 8, Washington D.C. (1985)
  10. Leob S, Sourirajan S, Adv. Chem. Ser., 35, 117 (1962)
  11. Riley RL, Hightower GR, Lyons CR, "Reverse Osmosis Membranes Research," H.K. Lonsdale and H.E. Podall Eds., Plenum Press, New York (1972)
  12. Mulder M, "Basic Principles of Membrane Technology," 2nd ed., chapter 4, Kluwer Academic Publishers (1996)
  13. Feng X, Sourirajan S, Tezel H, Matsuura T, Farnand BA, Ind. Eng. Chem. Res., 32, 533 (1993) 
  14. Serfaty IW, "Polyimides: Synthesis, Characterization, and Application," Vol. 1, K.L. Mittal ed., Plenum Press, 149, New York (1991)
  15. Huang RY, Feng XS, J. Appl. Polym. Sci., 57(5), 613 (1995) 
  16. Kim SG, Jegal JG, Lee KH, J. Korean Ind. Eng. Chem., 8(6), 945 (1997)