Computers & Chemical Engineering, Vol.51, 172-180, 2013
On the role of the necessary conditions of optimality in structuring dynamic real-time optimization schemes
In dynamic optimization problems, the optimal input profiles are typically obtained using models that predict the system behavior. In practice, however, process models are often inaccurate, and on-line model adaptation is required for appropriate prediction and re-optimization. In most dynamic real-time optimization schemes, the available measurements are used to update the plant model, with uncertainty being lumped into selected uncertain plant parameters; furthermore, a piecewise-constant parameterization is used for the input profiles. This paper argues that the knowledge of the necessary conditions of optimality (NCO) can help devise more efficient and more robust real-time optimization schemes. Ideally, the structuring decisions involve the NCO as follows: (i) one measures or estimates the plant NCO, (ii) a NCO-based input parameterization is used, and (iii) model adaptation is performed to meet the plant NCO. The benefit of using the NCO in dynamic real-time optimization is illustrated in simulation through the comparison of various schemes for solving a final-time optimal control problem in the presence of uncertainty. (C) 2012 Elsevier Ltd. All rights reserved.
Keywords:Dynamic real-time optimization;Plant-model mismatch;Modeling for optimization;Input parameterization;Plant model;Solution model