화학공학소재연구정보센터
Energy Conversion and Management, Vol.65, 497-506, 2013
Analysis of a directional hydraulic valve by a Direct Numerical Simulation using an immersed-boundary method
The improvement of the hydraulic valves depends on the careful analysis of the coherent structures driving the motion of the working fluid. In the past those devices have been studied by experimental tests; during the last 15 years also several numerical works have been presented, solving the flow on body-fitted computational grids by RANS methods. In this study a different approach is proposed for the axisymmetric analysis of a directional valve (4/3, closed center): whereas the RANS techniques are based on the time-averaged equations of the flow, in the present work the unsteady Navier-Stokes equations have been solved using the Direct Numerical Simulation (DNS), which provides important details on the instantaneous structures of the flow, affecting the valve performance. Furthermore, while in the previous numerical studies the computational domain has been discretized by conformal grids, in this case the fluid-body interaction has been represented by an immersed-boundary (IB) method on a Cartesian grid. The analysis of the discharge coefficient and the flow forces for different openings s and pressure drops Delta p is presented in this paper. The behavior of those global parameters is justified also considering the time-averaged and the instantaneous fields. For small openings and pressure drops the flow is steady and attached to the wall of the discharge chamber on the side of the restricted section. When s and Delta p are increased the jet separates at the restricted section and it re-attaches downstream (Coanda effect), keeping the steady state. Finally, for large openings and pressure drops the flow becomes strongly unsteady: it is organized like a free jet and is dominated by large vortices. (C) 2012 Elsevier Ltd. AR rights reserved.