화학공학소재연구정보센터
Fluid Phase Equilibria, Vol.361, 135-142, 2014
Density prediction of liquid alkali metals and their mixtures using an artificial neural network method over the whole liquid range
In this study, the application of artificial neural network (ANN) method in predicting the density of alkali metals and their mixtures is investigated. A total number of 595 different data points of these compounds were used to train, validate and test the model. A typical three-layer feedforward backpropagation neural network has been trained by the Levenberg Marquardt algorithm. The tansig-tansig transfer functions with 15 neurons in the hidden layer makes the least error, so a network with (8-15-1) structure was used to design the ANN model. The average relative deviations for train, validation, and test sets are 0.1029, 0.1396, and 0.1002, respectively. A comparison between our results and those obtained from some previous works shows that this work, as an excellent alternative, can provide a simple procedure to predict the density of these compounds in a better accord with experimental data up to high temperature, high pressure (HTHP) conditions. (C) 2013 Elsevier B.V. All rights reserved.