화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.5, 796-803, August, 1999
연속반응기에서 스티렌과 메타크릴산 알킬의 라디칼 공중합 반응속도론
The Kinetics of Radical Copolymerization of Styrene with Alkyl Methacrylate in a CSTR
초록
스티렌(St.)과 메타크릴산 메틸(MMA), 메타크릴산 에틸(EMA), 및 메타크릴산 부틸(n-BMA)을 용매인 톨루엔에서 과산화벤조일(BPO)를 개시제로 사용하여 80℃에서 연속반응기를 사용하여 용액공중합을 행하였다. 반응물 부피와 체류시간은 각각 0.6L와 3시간으로 하였다. Kelen-Tudos법(또는 Fineman-Ross법)으로 결정한 단량체 반응성비 r1(St.)과 r2(RMA)는 r1(St.)=0.60(0.61), r2(MMA)=0.59(0.60); r1(St.)=0.65(0.62), r2(EMA)=0.55(0.52); r1(St.)=0.75(0.67), r2(BMA)=0.63(0.56)와 같았다. 공중합체의 가교정지인자, Φ값은 스티렌의 전체 조성에 대해 0.26∼0.96을 보였으며 공중합체내 스티렌 조성이 증가할수록 Φ값도 증가하였다. 시뮬레이션한 전환율과 공중합 속도를 실험 결과와 비교하였다. 동적인 정상상태에 도달하는 평균시간은 체류시간의 3.5배였다.
Solution copolymerization of styrene(St.) with methyl methacrylate(MMA), ethyl methacrylate(EMA) and n-butyl methacrylate(BMA) was carried out with benzoylperoxide(BPO) as an initiator in toluene at 80℃ in a continuous stirred tank reactor. Reaction volume and residence time were 0.6 liters and 3hours, respectively. The monomer reactivity ratios, r1(St.) and r2(RMA) determined by both the Kelen-Tudos method and the Fineman-Ross method were r1(St.)=0.60(0.61), r2(MMA)=0.59(0.60); r1(St.)=0.65(0.62), r2(EMA)=0.55(0.52); r1(St.)=0.75(0.67), r2(BMA)=0.61(0.56). The cross-termination factor Φ of the copolymer over the entire St. compositions ranged from 0.26 to 0.96. The Φ factors of St.-RMA copolymer were increased with increasing St. content. The simulated conversions and copolymerization rates were compared with the experimental results. The average time to reach dynamic steady-state was three times and half of the residence time
  1. Gupta MC, Nath JD, Appl. Polym. Sci., 25, 1017 (1980) 
  2. Das S, Rodriguez F, J. Appl. Polym. Sci., 39, 1309 (1990) 
  3. Das S, Rodriguez F, J. Appl. Polym. Sci., 32, 5981 (1986) 
  4. Vanderberg EJ, Salamone JC, ACS Symposium Series-Catalysis in Polymer Synthesis, Maple Press, York, PA (1992)
  5. Pinto JC, Ray WH, Chem. Eng. Sci., 50(4), 715 (1995) 
  6. Pinto JC, Chem. Eng. Sci., 50(21), 3455 (1995) 
  7. Kiparissides C, Chem. Eng. Sci., 51(10), 1637 (1996) 
  8. Balaraman KS, Kulkarni BD, Mashelkar RA, Chem. Eng. Commun., 16, 349 (1982)
  9. Kelen T, Tudos F, J. Macromol. Sci.-Chem., A9, 1 (1975)
  10. Finneman M, Ross SD, J. Polym. Sci., 66, 1594 (1944)
  11. Burnett GM, Evans P, Melville HW, Trans. Faraday Soc., 49, 1096 (1953) 
  12. Otsu T, Ito T, Imoto M, Kogyo Kagaku Zasshi, 69, 96 (1966)
  13. Ito K, J. Polym. Sci. A: Polym. Chem., 9, 867 (1971) 
  14. Morton M, Salatiello PP, Landfileld H, J. Polym. Sci., 8(11), 29 (1952)
  15. Smith WV, J. Am. Chem. Soc., 71, 4077 (1949) 
  16. Flory PJ, J. Am. Chem. Soc., 65, 372 (1943) 
  17. Fogker HS, "Elements of Chemical Reaction Engineering," Chap. 5, Prentice-Hall, Englewood Cliffs, NJ (1986)
  18. Drup JB, Immergut EH, "Polymer Hand book," 3rd. Ed., II (1989)
  19. Walling C, "Free Radicals in Solution," Chap. 4, Wiley, New York (1957)
  20. Ito K, J. Polym. Sci. A: Polym. Chem., 16, 2725 (1978)
  21. North AM, Polymer, 4, 134 (1963) 
  22. Atherton JN, North AM, Trans. Faraday Soc., 58, 2049 (1962) 
  23. Wittmer P, Macromol. Chem. Suppl., 3, 129 (1979)