Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.7, 1035-1040, November, 1999
이산화티탄에 의한 삼염화에틸렌의 광촉매 분해반응
Photocatalytic Degradation of Trichloroethylene over Titanium Dioxides
초록
자외선 조사하에서 TiO2를 촉매로 하여 trichloroethylene의 광분해반응을 행하였다. 여러 가지 TiO2 촉매의 활성을 비교하였고, 반응조건에 따른 광분해 활성을 조사하였다. 또한 빛의 세기에 따른 분해활성과 반응물에 첨가된 물의 영향을 조사하였다. 여러 가지 TiO2 촉매에서 P-25가 가장 높은 활성을 보였고, anatase형이 rutile형보다 높은 활성을 보였다. 또한 반응물의 유속이 느릴수록 또한 초기농도가 낮을수록 trichloroethylene의 분해 반응 활성은 증가하였고, 산화제로서 공기를 사용하는 것이 효과적이었다. 한편 반응물에 첨가된 물은 촉매의 활성을 감소시켰고, 빛의 세기가 증가할수록 분해 반응속도가 증가하였으나 태양광에 의해서는 분해율이 매우 낮았다. trichloroethylene의 농도가 낮을 겨우에는 촉매의 활성저하가 거의 일어나지 않았다.
Photocatalytic degradation of trichloroethylene has been carried out with UV-illuminated TiO2-coated pyrex reactor in gas phase. Three commercial TiO2 oxides were used as catalysts. The effect of reaction conditions, initial concentration of trichloroethylene, concentration of oxidant and light intensity on the photocatalytic activity were examined. Anatase-type catalyst showed higher activity than rutile-type, but P-25 catalyst showed the highest activity. The degradation rate increased with the decrease of flow rate and initial trichloroethylene concentration. It was preferable to use air as an oxidant. In addition, reactants with the water vapor decreased the activity and the degradation rate increased with the increase of light intensity, but it was very low with solar light. Photocatalytic deactivation was not observed at low concentration of trichloroethylene.
Keywords:photocatalytic degradation of trichloroethylene;TiO2-coated pyres reactor;P-25;anatase;rutile catalyst
- Wolf K, Yazdani A, Yates P, J. Air Waste Manage. Assoc., 41, 1055 (1991)
- Shah JJ, Singh HB, Environ. Sci. Technol., 22, 1381 (1988)
- Wilkinson CF, Environ. Sci. Technol., 21, 843 (1987)
- Ibusuki T, Takeuchi K, Atmos. Environ., 20, 1711 (1986)
- Alberici RM, Jardim WE, Appl. Catal. B: Environ., 14(1-2), 55 (1997)
- Peral J, Ollis DF, J. Catal., 136, 554 (1992)
- Dipple LA, Raupp GB, Catal. Lett., 4, 345 (1990)
- Dipple LA, Raupp GB, Environ. Sci. Technol., 26, 492 (1992)
- Borgarello E, Kiwi J, Pelizzetti E, Visca M, Gratzel M, J. Am. Chem. Soc., 103, 6324 (1981)
- Sclafani A, Palmisano L, Davi E, New J. Chem., 14, 265 (1990)
- Schindler KM, Kunst M, J. Phys. Chem., 94, 8222 (1990)
- Karakitsou KE, Verykios XE, J. Phys. Chem., 97, 1184 (1993)
- Matthews RW, Water Res., 20, 569 (1986)
- Pelizzetti E, Carlin V, Minero C, Gratzel M, New J. Chem., 15, 351 (1991)
- Matthews RW, J. Phys. Chem., 91, 1484 (1977)
- Ollis DF, Environ. Sci. Technol., 19, 480 (1985)
- Herrmann JM, Guillard C, Pichat P, Catal. Today, 17, 7 (1993)
- Bickley RI, Stone FS, J. Catal., 31, 389 (1973)
- Djeghri N, Formenti M, Juillet F, Teichner SJ, Faraday Discuss. Chem. Soc., 58, 185 (1974)
- Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995)
- Raupp GB, Junio CT, Appl. Surf. Sci., 72, 321 (1993)
- Ollis DF, Pelizzertti E, Serpone N, Environ. Sci. Technol., 25, 1523 (1991)
- Fredrick JE, Snell HE, Haywood EK, J. Photochem. Photobiol. A-Chem., 50, 443 (1989)
- Blake NR, Griffin GL, J. Phys. Chem., 92, 5697 (1988)
- Larson SA, Falconer JL, Appl. Catal. B: Environ., 4(4), 325 (1994)