화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.10, No.7, 1086-1091, November, 1999
K2O-MgO-Al2O3 3성분계에서 K+-β/β"-Al2O3의 합성 및 상관계
Synthesis and Phase Relations of Potassium-Beta-Aluminas in the Ternary System K2O-MgO-Al2O3
초록
K2O-MgO-Al2O3의 3성분계로부터 K+-β/β"Al2O3를 직접 고상반응법에 의하여 합성하였다. 합성시 초기조성, 합성온도, 합성시간 및 분쇄매체가 β/β"-Al2O3 상형성 및 상관계에 미치는 영향에 대하여 분석하였으며 최대 분율의 β"-Al2O3 상형성을 위한 최적 합성조건을 연구하였다. 조성범위로서 K2O와 Al2O3 상형성의 몰비를 1: 5에서 1:6.2로, 안정화제로 사용된 MgO는 4.2 wt % 에서 6.3 wt % 사이에서 변화시켰으며 합성온도는 1000 oC에서 1500 oC까지 취하였다. β/β"-Al2O3상은 α-Al2O3와 KAlO2가 결합하는 1000 oC 부근에서 형성되기 시작하여 점차 증가하다가 1200 C 부근에서 -Al2O3가 모두사라지면서 균일화되었다. β"-Al2O3 상분율은 K1.67Mg0.67Al10.33O17의 조성과 함께 1300 oC 부근에서 최대값을 보였다. 1300oC 이상의 합성 온도에서는 높은 potassium의 증기압에 따른 K2O의 손실에 의하여 β"-Al2O3 상분율이 감소하였으며 합성시간은 5시간 정도가 적당하였다. 분쇄 및 혼합을 위한 분산매체로는 증류수보다는 아세톤의 효과가 뛰어났다.
K+-β/β" -Al2O3 in the temary system K2O-MgO-Al2O3 was directly synthesized by solid state reaction. The phase formation and phase relation were carefully investigated in relation to starting composition, calcining temperature and time, and dispersion medium. The optimal synthetic condition was also examined for the formation of β"-Al2O3 phase with a maximum fraction. As a composition range,the mole ratio of K2O to Al2O3 was changed from 1:5 to 1:62 and the amount of MgO used as a stabilizer was varied from 4.2 wt % to 6.3 wt %. The calcining temperature was selected between 1000℃ and 1500℃. At 1000℃, the β/β"-Al2O3 phases began to form resulted from the combining of -Al2O3 and KAlO2 and increased with temperature rising. All of α-Al2O3 phase disappeared to be homogenized to the β/β"-Al2O3 phase at 1200℃. Near the temperature at 1300℃, the fraction of β"-Al2O3 phase showed a maximum value with the composition of K1.67Mg0.67Al10.33O17. At temperatures above 1300, the fraction of -Al2O3 phase decreased gradually owing to K2O loss caused by a high potassium vapor pressure, and the appropriate calcining time was about 5 hours. Acetone was more effective than distilled water as a dispersion medium for milling and mixing.
  1. de Kroon AP, Schaefer GW, Aldinger F, Chem. Mater., 7, 878 (1995) 
  2. LeCars Y, Thery J, Collongues R, Rev. Int. Hautes Temp. Refract., 9, 153 (1972)
  3. Collonues R, Thery J, Boilot JP, "Solid Electrolytes," ed. P. Hagenmuller and W. Vangool, 253, Academic Press, New York (1978)
  4. Zuxiang L, Kungang C, "Microstructure and Electrical Properties of Doped β"-alumina," Microstructure and Properties of Ceramic Materials, 391, Science Press (1984)
  5. van Hoek J, Alkali metal Corrosion of Alumina, Thermodynamics, Phase Diagrams and Testing, NTIS ETN-91-98933 N91-19286 Field 71G, 71D, 99F 117 (1991)
  6. Schaefer GW, Weppner W, Solid State Ion., 53, 559 (1992) 
  7. Briant JL, Farrington GC, J. Solid State Chem., 33, 385 (1980) 
  8. Schaefer GW, Dekroon AP, Aldinger F, Solid State Ion., 81(1-2), 43 (1995) 
  9. Schaefer GW, Aldinger F, cfi/Ber. DKG, 73, 109 (1996)
  10. Bettman M, Terner LL, Inorg. Chem., 10, 1442 (1971) 
  11. Reed JS, "Introduction to the Principles of Ceramic Processing," ed. John Wiley & Sons, Inc., 263, Singapore (1988)
  12. Song HI, Kim ES, Physica B, 150, 148 (1985)
  13. Stingl P, Vollweiler L, Der Einfluss von Verfabren-stechnishen Paramerter auf Microgefuge von Beta-Al2O3, BMFT-Forschungsvorhaben, 03E-8122-A (1995)
  14. Chase MW, Davies CA, Downey JR, "JANAF Thermochemical Tables Third Edition," ed. David R. Lide, Journal of Physical and Chemical Reference Data 14, A.C.S, A.I.P. and N.B.S., Michigan (1985)
  15. Knudsen M, Ann. Physik., 28 (1909)
  16. Elrefaie FA, Smelzer WW, Solid State Ion., 12, 517 (1984)