화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.70, 389-408, 2014
Large eddy simulation of a medium-scale methanol pool fire using the extended eddy dissipation concept
The eddy dissipation concept (EDC) is extended to the large eddy simulation (LES) framework following the same logic of the turbulent energy cascade as originally proposed by Magnussen but taking into account the distinctive roles of the sub-grid scale turbulence. A series of structure levels are assumed to exist under the filter width "Delta" in the turbulent energy cascade which spans from the Kolmogorov to the integral scale. The total kinetic energy and its dissipation rate are expressed using the sub-grid scale (SGS) quantities. Assuming infinitely fast chemistry, the filtered reaction rate in the EDC is controlled by the turbulent mixing rate between the fine structures at Kolmogorov scales and the surrounding fluids. The newly extended EDC was implemented in the open source FireFOAM solver, and large eddy simulation of a 30.5 cm diameter methanol pool fire was performed using this solver. Reasonable agreement is achieved by comparing the predicted heat release rate, radiative fraction, velocity and its fluctuation, temperature and its fluctuation, turbulent heat flux, SGS and total dissipation rate, SGS and total kinetic energy, time scales, and length scales with the corresponding experimental data. (C) 2013 Elsevier Ltd. All rights reserved.