화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.31, No.3, 405-411, 2006
Conversion of fossil and biomass fuels to electric power and transportation fuels by high efficiency integrated plasma fuel cell (IPFC) energy cycle
The IPFC is a high efficiency energy cycle, which converts fossil and biomass fuel to electricity and co-product hydrogen and liquid transportation fuels (gasoline and diesel). The cycle consists of two basic units, a hydrogen plasma black reactor (HPBR) which converts the carbonaceous fuel feedstock to elemental carbon and hydrogen and CO gas. The carbon is used as fuel in a direct carbon fuel cell (DCFC), which generates electricity, a small part of which is used to power the plasma reactor. The gases are cleaned and water gas shifted for either hydrogen or syngas formation. The hydrogen is separated for production or the syngas is catalytically converted in a Fischer-Tropsch (F-T) reactor to gasoline and/or diesel fuel. Based on the demonstrated efficiencies of each of the component reactors, the overall IPFC thermal efficiency for electricity and hydrogen or transportation fuel is estimated to vary from 70 to 90% depending on the feedstock and the co-product gas or liquid fuel produced. The CO2 emissions are proportionately reduced and are in concentrated streams directly ready for sequestration. Preliminary cost estimates indicate that IPFC is highly competitive with respect to conventional integrated combined cycle plants (NGCC and IGCC) for production of electricity and hydrogen and transportation fuels. (c) 2005 International Association for Hydrogen Energy. Published by Elsevier Ltd. All fights reserved.