화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.34, No.15, 6532-6544, 2009
Flame propagation in stratified hydrogen-air mixtures: Spark placement effects
Two-dimensional laminar flame simulations of a forced-ignition event in an initially quiescent mixing layer of hydrogen and air have been carried out at atmospheric pressure using detailed chemistry and effective binary diffusion coefficients. Since control of the ignition location is known to be critical in direct-injection spark-ignition engines, this study primarily investigates the effect of initial spark placement within the flammability limits of hydrogen-air. Displacement and stabilization speeds of the propagating flame fronts have been computed along isocontours of water vapor representing 10% and 25% of the downstream equilibrium concentration. Following the period of spark energy addition the flame kernel is observed to develop into tribrachial flames that subsequently propagate along the stoichiometric line. For all cases of successful ignition, transient spark effects are observed to dissipate within 0.18 ms. Subsequent structure and propagation speed of the flame are not influenced by the transient development phase. (C) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.