화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.35, No.8, 3258-3262, 2010
Nanostructured silver fibers: Facile synthesis based on natural cellulose and application to graphite composite electrode for oxygen reduction
The development of cheaper electrocatalysts for fuel cells is an important research area. This work proposes a new, simpler and low-cost approach to develop nanostructured silver electrocatalysts by using natural cellulose as a template. Silver was deposited by reduction of Ag complexes on the surface of cellulose fibers, followed by heat removal of the template to create self-standing nanostructured silver fibers (NSSFs). X-Ray diffraction (XRD) showed fcc silver phase and X-Ray photoelectron spectroscopy (XPS) demonstrated that the surface was partially oxidized. The morphology of the fibers consisted of 50 nm nanoparticles as the building blocks, and they possessed a specific surface area of about 25 m(2)/g, which is sufficiently high for electrocatalytic applications. The NSSFs were incorporated in a graphite composite electrode. The resulting modified electrode displayed a good electrocatalytic activity for the reduction of dissolved oxygen in basic media. In an O(2)-saturated 0.1 M KOH solution, the overpotential to initiate the oxygen reduction reaction reduced and the limiting current increased by increasing the relative amount of silver fibers from 0 to 5 wt%. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.