화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.3, 243-248, May, 2000
CMPO/TBP-DTPA-NaNO3계에서 Dy/Nd의 상호분리
Mutual separation of Dy and Nd in the CMPO/TRP-DTPA-NaNO3 System
E-mail:
초록
산화가 상태3가의 (MA) 및 (RE)를 분리하는 새로운 공정을 개발하기 위하여 (CMPO)TBP-DTPA-NaNO3 계에서 Dy와 Nd의 상호분리 연구를 수행하였다. MA와 RE의 대표원소로는 Dy 및 Nd를, Dy와 Nd의 선택적 역추출제로는 DTPA/NaNO3 혼합용액 및 질산을 각각 선정하였다. Dy의 역추출은 CMPO/TBP 유기상 내 질산 농도, DTPA 농도, NaNO3의 농도 및 수용상의 pH 변화에 대해, Nd의 역추출은 HNO3 sdh도 변화에 대해 각각 고찰하였다. Dy의 역추출은 유기상 내 질산농도 및 NaNO3 농도 증가에 따라 감소하는데 반하여, DTPA 및 pH 증가에 따라서는 증가하였다. 0.05M DTPA/2M/NaNO3 및 pH = 2에서 65.1%의 Dy가 역추출되었으며 이때 Nd와의 상호분리 계수는 약 31이었다. 한편 질산에 의한 Nd의 역추출은 질산 농도 감소에 따라 증가하며, 0.01M에서 66.1%가 역추출 되었다. 이로부터 3가의 금속이온을 CMPO/TBP에 의해 공추출시킨후, NaNO3에 의해 질산을 역추출하면 DTPA/NaNO3의 혼합용액으로 MA와 RE를 효과적으로 분리할 수 있음을 확인 할 수 있었다.
In order to develop the new partitioning process of trivalent minor actinide (MA) and rare earth element (RE), a mutual separation of Dy and Nd was studied in the system of n-octyl(phenyl)-N, N-diisobutyl methyl phosphine oxide (CMPO)/tributyl phosphate (TBP)-diethylene triamine penta acetic acid (DTPA)-NaNO3. Dy and Nd were used as a representative element of MA and RE, respectively. Stripping agents used for the selective separation of Dy and Nd were a mixed solution of DTPA and NaNO3, and nitric acid, respectively. Mutual separation behaviors of Dy and Nd were observed and effects of HNO3 concentration loaded in the mixed solvent of CMPO and TBP, NaNO3 concentration, DTPA concentration and pH of aqueous phase of stripping yields were clarified. At 0.05 M DTPA, 2M NaNO3 and pH=2, the stripping yield of Dy and separation factor Dy/Nd were 65.1% and about 31, respectively. On the other hand, the stripping yield of Nd increased with decreasing the nitric acid concentration and was 66.1% at 0.01M HNO3. From results, it was found that MA could be selectively stripped from RE by a mixed solution of DTPA and NaNO3 adjusted to pH 2, after a co-extraction of MA/RE by CMPO/TBP following a selective stripping of nitric acid by NaNO3.
  1. Morita Y, Yamaguchi I, Kondo Y, Shirahashi K, "Research and Development on the Partitioning at JAERI," IAEA-TECDOC-783 (1995)
  2. Liljenzin JO, Persson G, Svantesson I, Wingefors S, Radiochim. Acta, 35, 155 (1984)
  3. Song C, Glatz JP, He X, Bokelund H, Koch L, "Actinide Partitioning by Means of the TRPO Process," RECOD '94, London, U.K. (1994)
  4. Horwitz EP, Kalina DG, Diamond H, Vandegrift GF, Schultz WW, Solvent Extr. Ion Exch., 3(1-2), 75 (1985)
  5. Madic C, Blanc P, Berthon L, "Actinide Partitioning from HLLW Using the DIAMEX Process," RECOD '94, London, U.K. (1994)
  6. Lee EH, Hwang DS, Kim KW, Shin YJ, Yoo JH, J. Korean Ind. Eng. Chem., 6(5), 882 (1995)
  7. Lee EH, Yang HB, Kim KW, Lim JG, Yoo JH, J. Ind. Eng. Chem., 3(1), 39 (1997) 
  8. OECD Final Report, "Status and Assessment Report on Actinide and Fission Product Partitioning and Transmutation," NEA/PTS/DOC(98)4 (1998)
  9. Lelievre D, Boussier H, Grouiller JP, Bush RP, "Perspectives and Cost of Partitioning and Transmutation of Long-Lived Radionuclides," EUR-17485 (1996)
  10. Kwon SG, Lee EH, Kim JS, Yoo JH, Park HS, J. Korean Nucl. Soc., 31(5), 498 (1999)
  11. Vandegrift GF, Leonard RA, Steindler MJ, "Transuranic Decontami-Nation of Nitric acid by the TRUEX Solvent Extraction Process - Preliminary Development Studies," ANL-84-45 (1984)
  12. Kondo Y, Takitsuka T, "Technology Assessment of Partitioning Process," JAERI-M-94-067 (1994)
  13. Baybarz RD, J. Inorg. Nucl. Chem., 27, 1831 (1965) 
  14. Horwitz EP, Kalina DG, Solvent Extr. Ion Exch., 2(2), 179 (1984)
  15. Horwitz EP, Martin KA, Diamond H, Kaplan L, Solvent Extr. Ion Exch., 4(3), 449 (1986)
  16. Schultz WW, "Science and Technology of TBP," CRS Press, Florida, U.S.A. (1990)
  17. Moeller T, Thompson LC, J. Inorg. Nucl. Chem., 24, 499 (1962) 
  18. Nakamoto K, Morimoto Y, Martell AE, Org. Biological Chem., 85, 309 (1963)