화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.3, 261-265, May, 2000
폴리우레탄 이오노머의 열적·동역학적 성질에 미치는 가소제의 영향
Effects of Plasticizers on the Thermal and Dynamic Mechanical Properties of Polyurethane Ionomers
E-mail:
초록
폴리우레탄과 폴리우레탄 이오노머의 양친성 가소제로써 스테아린산 아연을 첨가함에 따른 열적·동력학적 성질을 조사하였다. 폴리우레탄은 분자량이 1000인 poly(tetramethylene ether glycol), diphenyl methane 4,4`-diisocyanate, 1,4-butane diol을 이용하여 prepolymer 법으로 제조하였으며, 폴리우레탄 이오노머는 쇄연장제로 dimethylol propionic acid를 사용하고 중화를 위하여 아연이온을 도입하였다. 폴리우레탄에 스테아린산 아연을 첨가하는 경우 스테아린산 아연 용융 온도 이하에서 대부분 결정형태로 존재하여 폴리우레탄 연질부 유리전이온도의 증가와 고무상 평탄영역의 저장 탄성율 증가를 보여 단단한 충전제 첨가 효과가 나타났다. 폴리우레탄 이오노머에 스테아린산 아연을 첨가하는 경우 이온기들과 양친성 스테아린산 아연의 상호작용으로 이온성 경질부의 혼입량이 증가한 폴리우레탄 연질부의 가소화 효과가 관찰되고, 스테아린산 아연 첨가량이 증가함에 따라 결정형태로 존재하는 것들에 의한 충전제 효과가 관찰되었다.
Different amounts of zinc stearate (ZS) were incorporated as an amphiphilic into a polyurethane (PU) and a polyurethane ionomer (PUI) and the effects of the ZS on the thermal and dynamic mechanical properties of PU and the PUI were investigated. The PU was prepared by the prepolymer method from poly(tetramethylene ether glycol) of molecular weight 1000, diphenyl methane 4,4`-diisocyanate, and 1,4-butane diol. In order to prepare the PUI, dimethylol propionic acid was neutralized with zinc cation. It was observed that the glass transition temperatures of the soft sements (Tgs) and the rubbery plateau modulus (Erp) of the PU increased with the amount of ZS. The increase of Tgs and Erp were attributed to crystalline ZS similar to rigid fillers in the PU. In the PUI, Tgs decreased whereas Erp decreased initially and increased thereafter with increasing the ZS contents. It is postulated that the plasticization of the soft segments as well as the ionic hard segments in the PUI occurs due to the interaction of ionic moiety and the ZS. The change of Erp of the PUI was attributed to change of crystallinity of ZS in the PUI.
  1. Szycher M, Szycher's Handbook of Polyurethanes, Chapter 1, CRC Press, Boca Raton (1999)
  2. Dieterich D, Hespe H, Polyurethane Handbook, 2nd ed., edt. by G. Oertel, p. 37, Hanser Publishers, Munich (1993)
  3. Leung LM, Koberstein JT, Macromolecules, 19, 706 (1986) 
  4. Koberstein JT, Russel TP, Macromolecules, 19, 714 (1986) 
  5. Martin DJ, Meijs GF, Renwick GM, Mccarthy SJ, Gunatillake PA, J. Appl. Polym. Sci., 62(9), 1377 (1996) 
  6. Doeterich D, Keberle W, Witt H, Angew. Chem.-Int. Edit., 9, 40 (1970) 
  7. Dieterich D, Prog. Org. Coat., 9, 281 (1981) 
  8. Yang CZ, Grasel TG, Bell JL, Register RA, Cooper S, J. Polym. Sci. B-Polym. Phys., 29, 581 (1991) 
  9. Eisenberg A, Kim JS, Introduction to Ionomers, John Wiley and Sons, New York (1998)
  10. Agarwal PK, Makowski HS, Lundburg RD, Macromolecules, 13, 1679 (1980) 
  11. David DJ, Stanley HB, Analytical Chemistry of the Polyurethane, Part III, Wiley Interscience, New York (1969)
  12. Wilkes GL, Wildnauer R, J. Appl. Phys., 46, 4148 (1975) 
  13. Duvdevani I, Lundburg RD, Wood-Cordova C, Wlkes HL, Coulombic Interactions in Macromolecular Systems, ACS Symposium Series 302, A. Eisenberg and F.B. Bailey edt., Chapter 15, ACS, Washington, D.C. (1986)
  14. Kim JS, Doo JK, Lee DS, J. Korean Ind. Eng. Chem., 10(8), 1216 (1999)
  15. Nielsen LE, Landel RF, Mechanical Properties of Polymers and Composites, 2nd edition, Marcel Dekker, New York (1994)
  16. Illers KH, Macromol. Chem., 38, 168 (1960) 
  17. Koberstein JT, Galambos AF, Macromolecules, 25, 5618 (1992)