화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.36, No.9, 5246-5261, 2011
Hydrogen production from water splitting under UV light irradiation over Ag-loaded mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalysts
Hydrogen production from the photocatalytic water splitting reaction is very attractive because it is an environmentally friendly process, where hydrogen is produced from two abundantly renewable sources, i.e. water and solar energy, with the aid of photocatalysts. TiO2 is the most widely investigated photocatalyst; however, it alone still exhibits low performance to photocatalytically produce hydrogen. Hence, the aim of this work focused on the enhanced photocatalytic hydrogen production over Ag-loaded mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalysts under UV light irradiation. The TiO2-ZrO2 mixed oxides with various TiO2-to-ZrO2 molar ratios were synthesized by a sol gel process with the aid of a structure-directing surfactant, followed by Ag loading via a photochemical deposition method. The influences of photocatalyst preparation parameters, i.e. calcination temperature, phase composition, and Ag loading, were studied. The results revealed that the mesoporous-assembled TiO2-ZrO2 mixed oxide nanocrystal photocatalyst with a TiO2-to-ZrO2 molar ratio of 93:7 calcined at 500 degrees C exhibited the highest photocatalytic hydrogen production activity, and the Ag loading of 0.5 wt.% further greatly enhanced the photocatalytic activity of such TiO2-ZrO2 mixed oxide photocatalyst. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.