화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.36, No.11, 6616-6627, 2011
Production of ultrapure hydrogen via utilizing fluidization concept from coupling of methanol and benzene synthesis in a hydrogen-permselective membrane reactor
In this work, a novel fluidized-bed thermally coupled membrane reactor has been proposed for simultaneous hydrogen, methanol and benzene production. Methanol synthesis is carried out in exothermic side which is a fluidized-bed reactor and supplies the necessary heat for the endothermic side. Dehydrogenation of cyclohexane is carried out in endothermic side with hydrogen-permselective Pd/Ag membrane wall. Selective permeation of hydrogen through the membrane in endothermic side is achieved by co-current flow of sweep gas through the permeation side. A steady-state fixed-bed heterogeneous model for dehydrogenation reactor and two-phase theory in bubbling regime of fluidization for methanol synthesis reactor is used to model and simulate the integrated proposed system. This reactor configuration solves some observed drawbacks of new thermally coupled membrane reactor such as internal mass transfer limitations, pressure drop, radial gradient of concentration and temperature in both sides. The proposed model has been used to compare the performance of a fluidized-bed thermally coupled membrane reactor (FTCMR) with thermally coupled membrane reactor (TCMR) and conventional methanol reactor (CR) at identical process conditions. This comparison demonstrates that fluidizing the catalytic bed in the exothermic side of reactor caused a favorable temperature profile along the FTCMR. Furthermore, the simulation results represent 5.6% enhancement in the yield of hydrogen recovery in comparison with TCMR. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.