화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.36, No.13, 7791-7798, 2011
Investigation of molybdenum-(resorcinol-formaldehyde) (Mo-RF) electrode for alkaline electrolyser operation
The use of zero-gap cell geometry and development of low cost electrodes are some of several attempts on reducing cost and increasing efficiency of electrolytic hydrogen production. This study involves the synthesis of an electrode consisting of resorcinol formaldehyde (RF) carbon aerogels of high surface area (>700 m(2)/g) and nano-pore sizes (4 nm) thermally deposited on molybdenum metal. The hydrogen evolution reaction (HER) characteristics of the Mo-RF electrode involving an intermediate 'spectator metaloxo' compound and its Volmer-Heyrovsky electro-catalyst property are described. The physical and morphological structure of the Mo-RF has been shown through SEM images thus confirming the effectiveness of the synthesis method. Polarisation measurement of the Mo-RF electrode in 30% (by vol) KOH solution at 298 K indicates its potential applications in alkaline electrolysers. It is anticipated that the use of Mo-RF electrode offers economic benefit of reduced capital cost investment compared with other electrodes such as Pt-C previously used in electrolysers. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.