International Journal of Hydrogen Energy, Vol.36, No.16, 9446-9452, 2011
Solar photocatalytic reactor performance for hydrogen production from incident ultraviolet radiation
Solar based hydrogen production is a promising alternative to methods based on fossil fuels, such as steam methane reforming (SMR) and coal gasification. A more economically viable way of producing hydrogen from water is under active investigation by many researchers, to convert solar energy to chemical energy with higher efficiency. In this paper, supramolecular complexes developed by Brewer (2006) for photocatalytic hydrogen production are examined, particularly for larger scale engineering reactors that can use visible light to dissolve the photocatalysts in water, causing the splitting of water molecules into hydrogen and hydroxyl ions. This paper analyzes and optimizes the system parameters associated with this system. A predictive model for the reactor is developed for a batch type photocatalytic reactor. Results are presented and discussed to evaluate how the system parameters affect the hydrogen production rate, and solar to hydrogen efficiency, using a monochromatic LED array and Rhodium based photocatalysts. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.