Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.3, 306-310, May, 2000
PEG 사슬길이 변화에 따른 개질 Polyurethane/실리카 유기/무기 복합체에서의 미세분산 특성
Dispersion Characteristics of Modified Polyurethane/Silica Organic/Inorganic Hybrid Composites with Variation of PEG Chain Length
E-mail:
초록
서로 다른 분자량을 갖는 여러 종류의 poly(ethylene glycol) (PEG)을 선정하여 과량의 isophorone diisocyanate와 반응시켜 isocyanate 말단기를 갖는 polyurethane (PU)을 제조하였다. 이것을 반응성 아민 관능기를 지닌 γ-aminopropyltriethoxysilane과 반응시켜 사슬 말단에 triethoxysilane기를 가진 개질 PU를 합성하였다. 개질 PU와 일정량의 tetraethyl orthosilicate (TEOS)를 혼합한 후 졸-겔 반응에 의해 유기/무기 복합체를 제조하였다. 개질 PU/실리카 유기/무기 복합체에서는 PEG 사슬길이가 짧아질수록 PU의 PEG 사슬 결정성이 감소하고 PU와 실리카 간의 미세분산이 우수하여 투명성이 향상되었고, PEG 사슬길이가 길어지면 실리카의 미세분산에도 불구하고 PU의 PEG 사슬 결정화에 의해 투명성이 저하되었다.
Kyung-Won Kang, Hyung-Il Kim
Isocyanate-terminated polyurethanes (PU''s) which have different PEG chain length were prepared by the reaction of poly(ethylene glycol) (PEG) having different molecular weight with excess isophorone diisocyanate. And then these PU''s were reacted with γ-aminopropyltriethoxysilane to produce modified PU''s containing triethoxysilane group at both chain ends. Organic/inorganic composites were prepared by sol-gel reaction of the mixture of tetraethyl orthosilicate (TEOS) and modified PU''s. Modified PU/silica hybrid composites showed the reduced crystallinity of PEG chain of PU and improved optical transparency as the chain length of PEG decreased. The hybrid composite showed the reduced optical transparency as the chain length of PEG increased due to the crystallization of PEG chain of PU despite of the fine dispersion of silica.
- Wolgnier T, Phalippou J, J. Mater. Sci., 25, 3118 (1990)
- Andrievski RA, J. Mater. Sci., 29(3), 614 (1994)
- Scholze H, J. Non-Cryst. Solids, 73, 669 (1985)
- Zerda TW, Artaki I, Jonas J, J. Non-Cryst. Solids, 81, 365 (1986)
- Brinker CJ, Sherer GW, J. Non-Cryst. Solids, 70, 301 (1985)
- Novak BM, Adv. Mater., 6, 422 (1993)
- Sakka S, Kamiya K, J. Non-Cryst. Solids, 42, 403 (1980)
- Fitzgerald JJ, Landry CJT, Pochan JM, Macromolecules, 25, 3715 (1992)
- Fitzgerald JJ, Landry CJT, Coltrain BK, Macromolecules, 26, 3702 (1993)
- Coltrain BK, Landry CJT, O'Reilly JM, Chem. Mater., 5, 1445 (1993)
- Novak BM, Davies C, Macromolecules, 24, 5481 (1991)
- Ellsworth MW, Novark BM, J. Am. Chem. Soc., 113, 2756 (1991)
- Huang H, Orler B, Polym. Bull., 14, 557 (1985)
- Hung HH, Orler B, Wilkes GL, Macromolecules, 20, 1332 (1987)
- Ravine D, Semine A, Charbouillot Y, Vincens M, J. Non-Cryst. Solids, 82, 210 (1986)
- Scholze C, Ribot F, New Chem., 18, 1007 (1994)
- Wilkes GL, Orler B, Huang HH, Polym. Prep., 26, 300 (1985)
- Morikawa A, Iyoku Y, J. Mater. Chem., 2, 679 (1992)
- Wen J, Wilkes GL, Chem. Mater., 8, 1667 (1996)
- Bailey FE, Koleske V, "Alkylene Oxides and Their Polymers," Marcel Dekker, New York (1991)
- Gaylord NG, "Polyethers," Interscience, New York (1963)
- Gray FM, "Solid Polymer Electrolytes, Fundamentals and Technological Application," VCH, New York (1991)
- Lundsted LG, Schmolka LR, "Block and Graft Copolymerization," ed. R.J. Ceresa, Vol. 2, Chapters 1 and 2, John Wiley and Sons, New York (1975)
- Judenstein P, Titman J, Stamm M, Schmidt H, Chem. Mater., 6, 127 (1994)
- Nakafuku C, Toyonaga N, Polymer, 33, 2370 (1992)