화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.4, 408-413, June, 2000
고분자 정공 전달체 PDPMA와 Alq3의 블렌드를 사용한 유기 발광소자의 제작 및 광·전기적 특성
Fabricatin and Optoelectrical Characteristiccs of Organic Electroluminescent Device using Blend of PDPMA as a Polymer Hole Transport Material and Alq3
E-mail:
초록
기존의 적충형 저분자 유기 발광소자의 내구성을 향상시키기 위해 poly[N-(p-diphenylamine) phenylmethacrylamide](PDPMA) 고분자 정공 전달체와 tris(8-quinolinolato) aluminum(Alq3)저분자 발광물질의 블렌드를 사용하여 새로운 개념의 유기 발광소자를 제작하였다. PDPMA-Alq3 블렌드 필름은 스핀코팅에 의해 제조하였다. PDPMA-Alq3 블렌드의 photoluminescence(PL) 강도는 Alq3의 함유량 증가에 따라 증가하다가 30 mol%에서 최고의 값에 도달하였다. ITO/PDPMA-Alq3 블렌드 (7:3)/Al으로 구성되는 유기 발광소자는 6V의 낮은 구동전압을 나타냈으며 14V에서 1200 cd/㎡ 의 밝은 녹색빛을 발광하였다. 특히 대기중에서 PDPMA-Alq3 블렌드의 표면형태에 있어서 큰 변화는 관찰되지 않았다.
In this study a novel organic electroluminescent (EL) device was fabricated using blend of poly[N-(p-diphenylamine) phenylmethacrylamide](PDPMA) as a polymer hole transport material and tris(8-quinolinolato) aluminum (Alq3) as an emitting material in order to improve the durability of conventional multilayered organic EL device prepared with low molecular weight hydrocarbon compounds. The PDPMA-Alq3 blend film was prepared by spin coating method. Photoluminescene (PL) intensity of PDPMA-Alq3 blend increased with increasing the content of Alq3 and reached the maximum value at a 30mol% of Alq3. The prepared organic EL device consisted of ITO/PDPMA-Alq3 blend (7:3)/Al exhibited a low drive voltage of 6 V and emitted green light with high brightness of 1200 cd/㎡ at a DC 14V. Especially, no significant change in surface morphology of PDPMA-Alq3 blend was observed.
  1. Tang CW, Vanslyke SA, Appl. Phys. Lett., 51, 913 (1987) 
  2. Shirota Y, Kuwabara Y, Inaba H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S, Imai K, Appl. Phys. Lett., 65, 807 (1994) 
  3. Hamada Y, Sano T, Shibata K, Kuroki K, Jpn. J. Appl. Phys., 34, L824 (1995) 
  4. Tang CW, Vanslyke SA, Chen CH, J. Appl. Phys., 65, 3610 (1989) 
  5. Sano T, Fujita M, Fujii T, Hamada Y, Shibata K, Kuroki K, Jpn. J. Appl. Phys., 34, 1883 (1995) 
  6. Burrows PE, Forest SR, Thompson ME, Sibley SP, Appl. Phys. Lett., 69, 2959 (1996) 
  7. Sheats JR, Antoniadis H, Hueschen M, Leonard W, Miller J, Moon R, Roitman D, Stocking A, Science, 273(5277), 884 (1996) 
  8. Rhee HW, Song MK, Yoon JH, Kim KH, Choi YJ, Oh SY, Mol. Cryst. Liq. Cryst., 316, 293 (1998)
  9. Oh SY, Choi YJ, Lee CH, Yoon JH, Choi JW, Kim HS, Rhee HW, HWAHAK KONGHAK, 36(5), 713 (1998)
  10. Tachelet W, Jacobs S, Ndayikengurukiye H, Geise HJ, Gruner J, Appl. Phys. Lett., 64, 2364 (1994) 
  11. Hu B, Yang Z, Karasz FE, J. Appl. Phys., 76, 2419 (1994) 
  12. Vestwever H, Sander R, Greiner A, Heitz W, Mahrt RF, Baessler H, Synth. Met., 64, 141 (1994) 
  13. Parker ID, J. Appl. Phys., 75, 1656 (1994) 
  14. Oh SY, Kim HM, Lee CH, Choi JW, Rhee HW, Synth. Met., in press
  15. Oh SY, Kim HM, Lee CH, Choi JW, Rhee HW, Mol. Cryst. Liq. Cryst., in press
  16. Oh SY, Kim HM, Lee CH, Choi JW, Rhee HW, Kim HS, Polym.(Korea), 24(1), 90 (2000)
  17. Scott JC, Kaufman JH, Block PJ, Dpiertro R, Salein J, Goitia JA, J. Appl. Phys., 79, 2745 (1996) 
  18. Choi JW, Kim JS, Rhee HW, Oh SY, Thin Solid Films, in press