Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.4, 408-413, June, 2000
고분자 정공 전달체 PDPMA와 Alq3의 블렌드를 사용한 유기 발광소자의 제작 및 광·전기적 특성
Fabricatin and Optoelectrical Characteristiccs of Organic Electroluminescent Device using Blend of PDPMA as a Polymer Hole Transport Material and Alq3
E-mail:
초록
기존의 적충형 저분자 유기 발광소자의 내구성을 향상시키기 위해 poly[N-(p-diphenylamine) phenylmethacrylamide](PDPMA) 고분자 정공 전달체와 tris(8-quinolinolato) aluminum(Alq3)저분자 발광물질의 블렌드를 사용하여 새로운 개념의 유기 발광소자를 제작하였다. PDPMA-Alq3 블렌드 필름은 스핀코팅에 의해 제조하였다. PDPMA-Alq3 블렌드의 photoluminescence(PL) 강도는 Alq3의 함유량 증가에 따라 증가하다가 30 mol%에서 최고의 값에 도달하였다. ITO/PDPMA-Alq3 블렌드 (7:3)/Al으로 구성되는 유기 발광소자는 6V의 낮은 구동전압을 나타냈으며 14V에서 1200 cd/㎡ 의 밝은 녹색빛을 발광하였다. 특히 대기중에서 PDPMA-Alq3 블렌드의 표면형태에 있어서 큰 변화는 관찰되지 않았다.
In this study a novel organic electroluminescent (EL) device was fabricated using blend of poly[N-(p-diphenylamine) phenylmethacrylamide](PDPMA) as a polymer hole transport material and tris(8-quinolinolato) aluminum (Alq3) as an emitting material in order to improve the durability of conventional multilayered organic EL device prepared with low molecular weight hydrocarbon compounds. The PDPMA-Alq3 blend film was prepared by spin coating method. Photoluminescene (PL) intensity of PDPMA-Alq3 blend increased with increasing the content of Alq3 and reached the maximum value at a 30mol% of Alq3. The prepared organic EL device consisted of ITO/PDPMA-Alq3 blend (7:3)/Al exhibited a low drive voltage of 6 V and emitted green light with high brightness of 1200 cd/㎡ at a DC 14V. Especially, no significant change in surface morphology of PDPMA-Alq3 blend was observed.
- Tang CW, Vanslyke SA, Appl. Phys. Lett., 51, 913 (1987)
- Shirota Y, Kuwabara Y, Inaba H, Wakimoto T, Nakada H, Yonemoto Y, Kawami S, Imai K, Appl. Phys. Lett., 65, 807 (1994)
- Hamada Y, Sano T, Shibata K, Kuroki K, Jpn. J. Appl. Phys., 34, L824 (1995)
- Tang CW, Vanslyke SA, Chen CH, J. Appl. Phys., 65, 3610 (1989)
- Sano T, Fujita M, Fujii T, Hamada Y, Shibata K, Kuroki K, Jpn. J. Appl. Phys., 34, 1883 (1995)
- Burrows PE, Forest SR, Thompson ME, Sibley SP, Appl. Phys. Lett., 69, 2959 (1996)
-
Sheats JR, Antoniadis H, Hueschen M, Leonard W, Miller J, Moon R, Roitman D, Stocking A, Science, 273(5277), 884 (1996)
- Rhee HW, Song MK, Yoon JH, Kim KH, Choi YJ, Oh SY, Mol. Cryst. Liq. Cryst., 316, 293 (1998)
- Oh SY, Choi YJ, Lee CH, Yoon JH, Choi JW, Kim HS, Rhee HW, HWAHAK KONGHAK, 36(5), 713 (1998)
- Tachelet W, Jacobs S, Ndayikengurukiye H, Geise HJ, Gruner J, Appl. Phys. Lett., 64, 2364 (1994)
- Hu B, Yang Z, Karasz FE, J. Appl. Phys., 76, 2419 (1994)
- Vestwever H, Sander R, Greiner A, Heitz W, Mahrt RF, Baessler H, Synth. Met., 64, 141 (1994)
- Parker ID, J. Appl. Phys., 75, 1656 (1994)
- Oh SY, Kim HM, Lee CH, Choi JW, Rhee HW, Synth. Met., in press
- Oh SY, Kim HM, Lee CH, Choi JW, Rhee HW, Mol. Cryst. Liq. Cryst., in press
- Oh SY, Kim HM, Lee CH, Choi JW, Rhee HW, Kim HS, Polym.(Korea), 24(1), 90 (2000)
- Scott JC, Kaufman JH, Block PJ, Dpiertro R, Salein J, Goitia JA, J. Appl. Phys., 79, 2745 (1996)
- Choi JW, Kim JS, Rhee HW, Oh SY, Thin Solid Films, in press