화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.37, No.21, 15992-15999, 2012
Co and Ni supported on CeO2 as selective bimetallic catalyst for dry reforming of methane
Co/CeO2 (Co 7.5 wt.%), Ni/CeO2 (Ni 7.5 wt.%) and Co-Ni/CeO2 (Co 3.75 wt.%, Ni 3.75 wt.%) catalysts were prepared by surfactant assisted co-precipitation method. Samples were characterized by X-Ray diffraction, BET surface areas measurements, temperature programmed reduction and tested for the dry reforming of methane CH4 + CO2 -> 2CO + 2H(2) in the temperature range 600-800 degrees C with a CH4:CO2:Ar 20:20:60 vol.% feed mixture and a total flow rate of 50 cm(3) min(-1) (GHSW = 30,000 mL g(-1)h(-1)). The bimetallic Co-Ni/CeO2 catalyst showed higher CH4 conversion in comparison with monometallic systems in the whole temperature range, being 50% at 600 degrees C and 97% at 800 degrees C. H-2/CO selectivity decreased in the following order: Co-Ni/CeO2 > Ni/CeO2 > Co/CeO2. Carbon deposition on spent catalysts was analyzed by thermal analysis (TG-DTA). After 20 h under stream at 750 degrees C, cobalt-containing catalysts, Co/CeO2 and Co Ni/CeO2, showed a stable operation in presence of a deposited amorphous carbon of 6 wt.%, whereas Ni/CeO2 showed an 8% decrease of catalytic activity due to a massive presence of amorphous and graphitic carbon (25 wt.%). Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.