International Journal of Hydrogen Energy, Vol.37, No.21, 16388-16396, 2012
Catalysts for hydrogen production in a multifuel processor by methanol, dimethyl ether and bioethanol steam reforming for fuel cell applications
Methanol, dimethyl ether and bioethanol steam reforming to hydrogen-rich gas were studied over CuO/CeO2 and CuO-CeO2/gamma-Al2O3 catalysts. Both catalysts were found to provide complete conversion of methanol to hydrogen-rich gas at 300-350 degrees C. Complete conversion of dimethyl ether to hydrogen-rich gas occurred over CuO CeO2/gamma-Al2O3 at 350-370 degrees C. Complete conversion of ethanol to hydrogen-rich gas occurred over CuO/CeO2 at 350 degrees C. In both cases, the CO content in the obtained gas mixture was low (<2 vol.%). This hydrogen-rich gas can be used directly for fuelling high-temperature PEM FC. For fuelling low-temperature PEM FC, it is needed only to clean up the hydrogen-rich gas from CO to the level of 10 ppm. CuO/CeO2 catalyst can be used for this purpose as well. Since no individual WGS stage, that is necessary in most other hydrogen production processes, is involved here, the miniaturization of the multifuel processor for hydrogen production by methanol, ethanol or DME SR is quite feasible. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.