화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.37, No.23, 18261-18271, 2012
Thermal analysis of air-cooled PEM fuel cells
Air-cooled proton exchange membrane fuel cells (PEMFCs), having combined air cooling and oxidant supply channels, offer significantly reduced bill of materials and system complexity compared to conventional, water-cooled fuel cells. Thermal management of air-cooled fuel cells is however a major challenge. In the present study, a 3D numerical thermal model is presented to analyze the heat transfer and predict the temperature distribution in air-cooled PEMFCs. Conservation equations of mass, momentum, species, and energy are solved in the oxidant channel, while energy equation is solved in the entire domain, including the membrane electrode assembly (MEA) and bipolar plates. The model is validated with experiments and can reasonably predict the maximum temperature and main temperature gradients in the stack. Large temperature variations are found between the cool incoming air flow and the hot bipolar plates and MEA, and in contrast to water-cooled fuel cells, significant temperature gradients are detected in the flow direction. Furthermore, the air velocity and in-plane thermal conductivity of the plate are found to play an important role in the thermal performance of the stack. Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.